Numerical Solution of Differential Equations: Problem Sheet 2 (of 6)

1. Consider the initial-value problem

$$y' = \log \log(4 + y^2), \qquad x \in [0, 1], \qquad y(0) = 1,$$

and the sequence $(y_n)_{n=0}^N$, $N \ge 1$, generated by the explicit Euler method

$$y_{n+1} = y_n + h \log \log(4 + y_n^2), \qquad n = 0, \dots, N - 1, \qquad y_0 = 1,$$

using the mesh points $x_n = nh$, n = 0, ..., N, with spacing h = 1/N. Here log denotes the logarithm with base e.

- (a) Let T_n denote the consistency error of Euler's method at $x = x_n$ for this initial value problem. Show that $|T_n| \le h/(4e)$.
- b) Verify that

$$|y(x_{n+1}) - y_{n+1}| \le (1 + hL)|y(x_n) - y_n| + h|T_n|, \qquad n = 0, \dots, N - 1$$

where $L = 1/(2 \log 4)$.

c) Find a positive integer N_0 , as small as possible, such that

$$\max_{0 \le n \le N} |y(x_n) - y_n| \le 10^{-4}$$

whenever $N \geq N_0$.

- 2. The explicit Euler method, the implicit Euler method, and the implicit midpoint rule are Runge–Kutta methods. Write down the formulae for their stages when considered as Runge–Kutta methods.
- 3. Consider the Runge–Kutta method $y_{n+1} = y_n + h(\alpha k_1 + \beta k_2)$ where $k_1 = f(x_n, y_n)$ and $k_2 = f(x_n + \gamma h, y_n + \gamma h k_1)$, and where α, β, γ are real parameters.
 - (a) Show that there is a choice of these parameters such that the order of the method is 2.
 - (b) Suppose that a second-order method of the above form is applied to the initial value problem $y' = -\lambda y$, y(0) = 1, where λ is a positive real number. Show that the sequence $(y_n)_{n\geq 0}$ is bounded if and only if $h \leq \frac{2}{\lambda}$. Show further that, for such λ ,

$$|y(x_n) - y_n| \le \frac{1}{6}\lambda^3 h^2 x_n, \quad n \ge 0.$$

- 4. a) What does it mean to say that a linear multistep method is *zero-stable*? Formulate an equivalent characterization of zero-stability of a linear multistep method in terms of the roots of its first characteristic polynomial.
 - b) Define the consistency error of a linear multistep method.
 - c) Show that there is a value of the parameter b such that the linear multistep method defined by the formula $y_{n+3} + (2b-3)(y_{n+2}-y_{n+1}) y_n = hb(f_{n+2}+f_{n+1})$ is fourth-order accurate. Show further that the method is *not* zero-stable for this value of b.