Numerical Solution of Differential Equations: Problem Sheet 3 (of 6)

- 1. A linear multistep method $\sum_{j=0}^{k} \alpha_j y_{n+j} = h \sum_{j=0}^{k} \beta_j f(x_{n+j}, y_{n+j}), n \ge 0$, for the numerical solution of the initial-value problem $y' = f(x, y)$, $y(x_0) = y_0$, on the mesh $\{x_j : x_j = x_0 + jh\}$ of uniform spacing $h > 0$ is said to be *absolutely stable* for a certain h if, when applied to the model problem $y' = \lambda y$, $y(0) = 1$, with $\lambda < 0$, on the interval $x \in [0, \infty)$, the sequence $(|y_n|)_{n\geq k}$ decays exponentially fast; i.e., $|y_n|\leq Ce^{-\mu n}, n\geq k$, for some positive constants C and μ .
	- a) Show that a linear multistep method is absolutely stable for $h > 0$ if, and only if, all roots z of its stability polynomial $\pi(z; \bar{h}) = \rho(z) - \bar{h}\sigma(z)$, where ρ and σ are the first and second characteristic polynomial of the linear multistep method respectively and $\bar{h} = \lambda h$, belong to the open unit disk $D = \{z : |z| < 1\}$ in the complex plane.
	- b) For each of the following methods find the range of $h > 0$ for which it is absolutely stable (when applied to $y' = \lambda y$, $y(0) = 1$, $\lambda < 0$, $x \in [0, \infty)$):
		- b1) $y_{n+1} y_n = hf(x_n, y_n);$
		- b2) $y_{n+1} y_n = hf(x_{n+1}, y_{n+1});$
		- b3) $y_{n+2} y_n = \frac{1}{3}$ $\frac{1}{3}h(f(x_{n+2}, y_{n+2}) + 4f(x_{n+1}, y_{n+1}) + f(x_n, y_n)).$
- 2. Which of the following would you regard a stiff initial-value problem?
	- a) $y' = -(10^5 e^{-10^4 x} + 1)(y 1), y(0) = 2$, on the interval $x \in [0, 1]$. Note that the solution can be found in closed form:

$$
y(x) = e^{10(e^{-10^4x} - 1)}e^{-x} + 1.
$$

b)

$$
y'_1 = -0.5y_1 + 0.501y_2,
$$
 $y_1(0) = 1.1,$
\n $y'_2 = 0.501y_1 - 0.5y_2,$ $y_2(0) = -0.9,$

on the interval $x \in [0, 1]$.

3. Consider the θ -method

$$
y_{n+1} = y_n + h [(1 - \theta)f_n + \theta f_{n+1}]
$$

for $\theta \in [0, 1]$.

- a) Show that the method is A–stable for $\theta \in [1/2, 1]$.
- b) A method is said to be $A(\alpha)$ –stable, $\alpha \in (0, \pi/2)$, if its region of absolute stability (as a set in the complex plane), contains the infinite wedge $\{\bar{h} : \pi - \alpha < \arg(\bar{h}) < \pi + \alpha\}.$ Find all $\theta \in [0, 1]$ such that the θ -method is $A(\alpha)$ -stable for some $\alpha \in (0, \pi/2)$.

Note: In the next question you will find it helpful to exploit the following result, known as Schur's criterion. Consider the polynomial $\phi(z) = c_k z^k + \cdots + c_1 z + c_0, c_k \neq 0, c_0 \neq 0$, with complex

coefficients. The polynomial ϕ is said to be a *Schur polynomial* if each of its roots z_j satisfies $|z_j|$ < 1, j = 1, ..., k. Given the polynomial $\phi(z)$, as above, consider the polynomial

$$
\hat{\phi}(z) = \bar{c}_0 z^k + \bar{c}_1 z^{k-1} + \ldots + \bar{c}_{k-1} z + \bar{c}_k ,
$$

where \bar{c}_j denotes the complex conjugate of c_j , $j = 1, \ldots, k$. Further, let us define

$$
\phi_1(z) = \frac{1}{z} \left[\hat{\phi}(0)\phi(z) - \phi(0)\hat{\phi}(z) \right] .
$$

Clearly ϕ_1 has degree $\leq k-1$. The polynomial ϕ is a Schur polynomial if, and only if, $|\hat{\phi}(0)| > |\phi(0)|$ and ϕ_1 is a Schur polynomial.

4. Show that the second-order backward differentiation method

$$
3y_{n+2} - 4y_{n+1} + y_n = 2hf(x_{n+2}, y_{n+2})
$$

is A-stable.