Numerical Solution of Differential Equations: Problem Sheet 5 (of 6)

1. The $\ell_{2}(-\infty, \infty)$ norm of U and the $L_{2}(-\pi / \Delta x, \pi / \Delta x)$ norm of \hat{U} are defined, respectively, by

$$
\|U\|_{\ell_{2}}=\left(\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}\right|^{2}\right)^{1 / 2}, \quad\|\hat{U}\|_{L_{2}}=\left(\int_{-\pi / \Delta x}^{\pi / \Delta x}|\hat{U}(k)|^{2} \mathrm{~d} k\right)^{1 / 2}
$$

Prove Parseval's identity:

$$
\|U\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|\hat{U}\|_{L_{2}}
$$

2. In the lectures we considered the simplest finite difference approximation of the heat equation $u_{t}=u_{x x}$, given by

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}=\frac{U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}}{(\Delta x)^{2}}, \quad j=\ldots,-2,-1,0,1,2, \ldots ; \quad n=0,1,2, \ldots
$$

What would the analogous difference approximation be based on values of U at just every other point in the x direction, i.e., U_{j+2}^{n}, U_{j}^{n} and U_{j-2}^{n} ? Now suppose that you create a new difference approximation from these two schemes by adding $1 / 2$ of the first difference approximation to $1 / 2$ of the second difference approximation. Using Fourier analysis, explore how large Δt can be in relation to Δx if this last scheme is to be stable in the norm of $\ell_{2}=\ell_{2}(-\infty, \infty)$.
3. Consider the implicit Euler scheme

$$
\begin{gathered}
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+b \frac{U_{j+1}^{n+1}-U_{j-1}^{n+1}}{2 \Delta x}=a \frac{U_{j+1}^{n+1}-2 U_{j}^{n+1}+U_{j-1}^{n+1}}{(\Delta x)^{2}}, \quad j=0, \pm 1, \pm 2, \ldots, \quad n \geq 0 \\
U_{j}^{0}=u_{0}\left(x_{j}\right), \quad j=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

for the numerical solution of the initial-value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=a \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=u_{0}(x), \quad-\infty<x<\infty
\end{gathered}
$$

where $a>0$ and b are fixed real numbers. Show that the scheme is unconditionally stable in the ℓ_{2} norm.
Show further that the consistency error $\left|T_{j}^{n}\right| \leq C\left(\Delta t+(\Delta x)^{2}\right)$ for all $n \geq 0$ and $j=$ $0, \pm 1, \pm 2, \ldots$, where C is a constant independent of Δt and Δx, provided that $\partial^{2} u / \partial t^{2}$, $\partial^{3} u / \partial x^{3}$ and $\partial^{4} u / \partial x^{4}$ exist and are bounded functions of x and $t,(x, t) \in(-\infty, \infty) \times[0, \infty)$.
4. Consider the θ-method for the numerical solution of the initial-value problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=u_{0}(x), \quad-\infty<x<\infty
\end{gathered}
$$

Suppose that the parameter θ has been chosen according to the formula

$$
\theta=\frac{1}{2}+\frac{(\Delta x)^{2}}{12 \Delta t} .
$$

Show that the resulting scheme is unconditionally stable in the ℓ_{2} norm and has a consistency error which is $\mathcal{O}\left((\Delta t)^{2}+(\Delta x)^{2}\right)$, provided that derivatives of u of sufficiently high order exist and are bounded functions of x and $t,(x, t) \in(-\infty, \infty) \times[0, \infty)$.

