Numerical Solution of Differential Equations:
Problem Sheet 5 (of 6)

1. The f5(—00,00) norm of U and the Ly(—7/Axz, m/Az) norm of U are defined, respectively,

by
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Prove Parseval’s identity:
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2. In the lectures we considered the simplest finite difference approximation of the heat equation
Up = Ugy, given by
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What would the analogous difference approximation be based on values of U at just every
other point in the x direction, i.e., Ul',, U and Ul ,7 Now suppose that you create a
new difference approximation from these two schemes by adding 1/2 of the first difference
approximation to 1/2 of the second difference approximation. Using Fourier analysis, explore
how large At can be in relation to Ax if this last scheme is to be stable in the norm of
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3. Consider the implicit Euler scheme
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j=0,+£1,42,...., n>0,

U = ug(;), j=0,£1,£2, ...,

for the numerical solution of the initial-value problem
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u(z,0) = ug(x), —00 < T < 00,

where a > 0 and b are fixed real numbers. Show that the scheme is unconditionally stable
in the /5 norm.

Show further that the consistency error |T7'| < C(At + (Axz)?) for all n > 0 and j =
0,%1,42,..., where C is a constant independent of At and Az, provided that 9%u/ot?,
OPu/0x® and 9*u/dz* exist and are bounded functions of z and ¢, (z,t) € (—o0,00) X [0, 00).

4. Consider the f-method for the numerical solution of the initial-value problem
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u(z,0) = up(x), —00 < < 00.



Suppose that the parameter 6 has been chosen according to the formula
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Show that the resulting scheme is unconditionally stable in the ¢ norm and has a consistency
error which is O((At)*+ (Ax)?), provided that derivatives of u of sufficiently high order exist
and are bounded functions of x and t, (z,t) € (—o0, 00) X [0, 00).



