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Numerical solution of differential equations is a rich and active field of
modern applied mathematics.

The growth of the subject is stimulated by ever-increasing demands from
the natural sciences, engineering and economics to provide accurate and
reliable approximations to mathematical models involving ODEs & PDEs
whose exact solutions are either too complicated to determine in closed
form or are not known to exist.
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Evolution of crack-fields

Numerical approximation of the Francfort–Marigo model of brittle fracture.
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Evolution of the computational grids

Numerical approximation of the Francfort–Marigo model of brittle fracture.
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The foundations of the theory of differential equations were laid by
Leibniz, the Bernoulli brothers, and others from the 1680s, not long
after Newton introduced his ‘fluxional equations’ in the 1670s.

Sir Isaac Newton Gottfried Wilhelm von Leibniz
1643–1727 1646–1716
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Around 1671, Newton wrote his, then unpublished, The Method of
Fluxions and Infinite Series (published in 1736), in which he classified
first-order differential equations, known to him as fluxional equations,
into three classes, as follows (using modern notation):

dy

dx
= f(y),

dy

dx
= f(x, y),︸ ︷︷ ︸

Ordinary Differential Equations (ODEs)

x
∂u

∂x
+ y

∂u

∂y
= u.︸ ︷︷ ︸

Partial Differential Equation (PDE)

In 1676, Newton solved his first “differential equation”.

In the same year, Leibniz introduced the term differential equation
(aequatio differentialis, Latin).
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Many differential equations are (much!) more complicated

Sphere in a turbulent flow:

Source:

Milton Van Dyke, An Album of Fluid Motion, Parabolic Press, 12th ed., 1982.
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Many differential equations are (much!) more complicated

The compressible Navier–Stokes equations:

Suppose that Ω ⊂ R3. Given

ρ0 = ρ0(x), u0 = u(x), f = f(x, t),

find
ρ = ρ(x, t), u = u(x, t),

such that:

∂ρ

∂t
+∇ · (u ρ) = 0 in Ω× (0,∞),

ρ(x, 0) = ρ0(x) for x ∈ Ω,

∂(ρu)

∂t
+∇ · (ρu⊗ u)−∇ · S(u, ρ) +∇ p(ρ) = ρ f in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

(ρu)(x, 0) = (ρ0 u0)(x) for x ∈ Ω.

P.-L. Lions (OUP, 1996, 1998).
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Mathematics of numerical algorithms?

The sinking of the Sleipner A offshore platform in Gandsfjorden near
Stavanger, Norway, on August 23, 1991, resulted in a loss of nearly one
billion dollars.

It was found to be the result of inaccurate numerical simulation.
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A landmark contribution to the foundations of the mathematical theory of
numerical methods for PDEs is Über die partiellen Differenzengleichungen
der mathematischen Physik by Richard Courant, Karl Friedrichs, and Hans
Lewy, (Mathematische Annalen, 1928).
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The basic idea

... is extremely simple. Suppose that y is differentiable at x ∈ R; then,

y′(x) = lim
h→0

y(x+ h)− y(x)

h
.

Thus,

y(x+ h)− y(x)

h
= y′(x) + o(1) as h→ 0.

This motivates the approximation of y′(x) by a divided difference:

y′(x) ≈ y(x+ h)− y(x)

h
as h→ 0.

Analogously, if y′ is differentiable, then

y′′(x) ≈ y(x+ h)− 2y(x) + y(x− h)

h2
as h→ 0.
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Euler’s method

Leonhard Euler (1707–1783)

Euler’s method for y′(x) = f(x, y(x)) subject to the i.c. y(x0) = y0:

y(xk + h)− y(xk)

h
≈ f(xk, y(xk)), y(x0) = y0, xk = x0 + kh,

for k = 0, 1, . . . .
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Cosmological simulation of the evolution of the Universe

Click here

Volker Springler (Astrophysics, U. of Heidelberg)
Millennium-XXL project: 67203 ≈ 303× 109 particles over the equivalent of more
than 13× 109 years. Largest N -body simulation ever: required the equivalent of
300 years of CPU time and used more than 12000 computer cores and 30 TB of
RAM on the Juropa Machine at the Jülich Supercomputer Centre in Germany.
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https://www.youtube.com/watch?v=xfgDoExbu_Q

