# Numerical Solution of Differential Equations I 

## Endre Süli

Mathematical Institute
University of Oxford
2019

Lecture 4

## General one-step methods

## Definition

A one-step method is a function $\Psi$ that takes the triplet

$$
(\xi, \eta ; h) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0}
$$

and a function $f$, and computes an approximation $\Psi(\xi, \eta ; h, f) \in \mathbb{R}$ of $y(\xi+h)$, which is the solution at $x=\xi+h$ of the initial-value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(\xi)=\eta
$$

The step size $h$ may need to be assumed to be sufficiently small for $\psi$ to be well-defined.

## Runge-Kutta methods

Euler's method is only first-order accurate. Runge-Kutta methods aim to achieve higher accuracy by sacrificing the efficiency of Euler's method through re-evaluating $f$ at points intermediate between $\left(x_{n}, y\left(x_{n}\right)\right)$ and $\left(x_{n+1}, y\left(x_{n+1}\right)\right)$.

The general $R$-stage Runge-Kutta family is defined by

$$
\begin{aligned}
y_{n+1} & =y_{n}+h \Phi\left(x_{n}, y_{n} ; h\right), \\
\Phi(x, y ; h) & =\sum_{r=1}^{R} c_{r} k_{r}, \\
k_{1} & =f(x, y), \\
k_{r} & =f\left(x+h a_{r}, y+h \sum_{s=1}^{r-1} b_{r s} k_{s}\right), \quad r=2, \ldots, R, \\
a_{r} & =\sum_{s=1}^{r-1} b_{r s}, \quad r=2, \ldots, R .
\end{aligned}
$$

In compressed form, this information is usually displayed in the so-called Butcher tableau shown in the following figure:

where $e=(1, \ldots, 1)^{\top}$.

Figure: Butcher tableau of a Runge-Kutta method

## One-stage Runge-Kutta methods

Suppose that $R=1$. Then, the resulting one-stage Runge-Kutta method is simply Euler's explicit method:

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

## Two-stage Runge-Kutta methods

Next, take $R=2$, corresponding to the following family:

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left(c_{1} k_{1}+c_{2} k_{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{1}=f\left(x_{n}, y_{n}\right)  \tag{2}\\
& k_{2}=f\left(x_{n}+a_{2} h, y_{n}+b_{21} h k_{1}\right), \tag{3}
\end{align*}
$$

and where the parameters $c_{1}, c_{2}, a_{2}$ and $b_{21}$ are to be determined. Clearly (1)-(3) can be rewritten as a general one-step method, with

$$
\Phi(x, y ; h):=c_{1} f(x, y)+c_{2} f\left(x+a_{2} h, y+b_{21} h f(x, y)\right) .
$$

By the consistency condition $\Phi(x, y ; 0)=f(x, y)$, a method from this family will be consistent if, and only if,

$$
c_{1}+c_{2}=1
$$

Further conditions on the parameters are obtained by attempting to maximise the order of accuracy of the method.

By expanding the consistency error of (1)-(3) in powers of $h$ :

$$
\begin{aligned}
T_{n}= & \frac{1}{2} h y^{\prime \prime}\left(x_{n}\right)+\frac{1}{6} h^{2} y^{\prime \prime \prime}\left(x_{n}\right)-c_{2} h\left[a_{2} f_{x}+b_{21} f_{y} f\right] \\
& -c_{2} h^{2}\left[\frac{1}{2} a_{2}^{2} f_{x x}+a_{2} b_{21} f_{x y} f+\frac{1}{2} b_{21}^{2} f_{y y} f^{2}\right]+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Here we have used the abbreviations

$$
f=f\left(x_{n}, y\left(x_{n}\right)\right), \quad f_{x}=\frac{\partial f}{\partial x}\left(x_{n}, y\left(x_{n}\right)\right), \quad \text { etc. }
$$

By noting that $y^{\prime \prime}=f_{x}+f_{y} f$, it follows that $T_{n}=\mathcal{O}\left(h^{2}\right)$ for any $f$ provided that

$$
a_{2} c_{2}=b_{21} c_{2}=\frac{1}{2}
$$

which implies that if $b_{21}=a_{2}, c_{2}=1 /\left(2 a_{2}\right)$ and $c_{1}=1-1 /\left(2 a_{2}\right)$ then the method is second-order accurate; while this still leaves one free parameter, $a_{2}$, it is easy to see that no choice of the parameters will make the method generally third-order accurate.

There are two well-known examples of second-order Runge-Kutta methods of the form (1)-(3):
a) The modified Euler method: In this case we take $a_{2}=\frac{1}{2}$ to obtain

$$
y_{n+1}=y_{n}+h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h f\left(x_{n}, y_{n}\right)\right)
$$

b) The improved Euler method: This is arrived at by choosing $a_{2}=1$ which gives

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right] .
$$

For these two methods it is easily verified by Taylor series expansion that the consistency error is of the form, respectively,

$$
\begin{aligned}
& T_{n}=\frac{1}{6} h^{2}\left[f_{y} F_{1}+\frac{1}{4} F_{2}\right]+\mathcal{O}\left(h^{3}\right) \\
& T_{n}=\frac{1}{6} h^{2}\left[f_{y} F_{1}-\frac{1}{2} F_{2}\right]+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

where

$$
F_{1}=f_{x}+f f_{y} \quad \text { and } \quad F_{2}=f_{x x}+2 f f_{x y}+f^{2} f_{y y}
$$

The methods (1)-(3) are explicit two-stage Runge-Kutta methods.

## Three-stage Runge-Kutta methods

Let us now suppose that $R=3$ to illustrate the general idea.
Thus, we consider the family of methods:

$$
y_{n+1}=y_{n}+h\left[c_{1} k_{1}+c_{2} k_{2}+c_{3} k_{3}\right]
$$

where

$$
\begin{aligned}
& k_{1}=f(x, y), \\
& k_{2}=f\left(x+h a_{2}, y+h b_{21} k_{1}\right), \\
& k_{3}=f\left(x+h a_{3}, y+h b_{31} k_{1}+h b_{32} k_{2}\right), \\
& a_{2}=b_{21}, \quad a_{3}=b_{31}+b_{32} .
\end{aligned}
$$

Writing $b_{21}=a_{2}$ and $b_{31}=a_{3}-b_{32}$ in the definitions of $k_{2}$ and $k_{3}$ respectively and expanding $k_{2}$ and $k_{3}$ into Taylor series about the point ( $x, y$ ) yields:

$$
\begin{aligned}
k_{2} & =f+h a_{2}\left(f_{x}+k_{1} f_{y}\right)+\frac{1}{2} h^{2} a_{2}^{2}\left(f_{x x}+2 k_{1} f_{x y}+k_{1}^{2} f_{y y}\right)+\mathcal{O}\left(h^{3}\right) \\
& =f+h a_{2}\left(f_{x}+f f_{y}\right)+\frac{1}{2} h^{2} a_{2}^{2}\left(f_{x x}+2 f f_{x y}+f^{2} f_{y y}\right)+\mathcal{O}\left(h^{3}\right) \\
& =f+h a_{2} F_{1}+\frac{1}{2} h^{2} a_{2}^{2} F_{2}+\mathcal{O}\left(h^{3}\right),
\end{aligned}
$$

where

$$
F_{1}=f_{x}+f f_{y} \quad \text { and } \quad F_{2}=f_{x x}+2 f f_{x y}+f^{2} f_{y y}
$$

and

$$
\begin{aligned}
k_{3}= & f+h\left\{a_{3} f_{x}+\left[\left(a_{3}-b_{32}\right) k_{1}+b_{32} k_{2}\right] f_{y}\right\} \\
& +\frac{1}{2} h^{2}\left\{a_{3}^{2} f_{x x}+2 a_{3}\left[\left(a_{3}-b_{32}\right) k_{1}+b_{32} k_{2}\right] f_{x y}\right. \\
& \left.+\left[\left(a_{3}-b_{32}\right) k_{1}+b_{32} k_{2}\right]^{2} f_{y y}\right\}+\mathcal{O}\left(h^{3}\right) \\
= & f+h a_{3} F_{1}+h^{2}\left(a_{2} b_{32} F_{1} f_{y}+\frac{1}{2} a_{3}^{2} F_{2}\right)+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Substituting these expressions for $k_{2}$ and $k_{3}$ gives

$$
\begin{aligned}
\Phi(x, y, h)= & \left(c_{1}+c_{2}+c_{3}\right) f+h\left(c_{2} a_{2}+c_{3} a_{3}\right) F_{1} \\
& +\frac{1}{2} h^{2}\left[2 c_{3} a_{2} b_{32} F_{1} f_{y}+\left(c_{2} a_{2}^{2}+c_{3} a_{3}^{2}\right) F_{2}\right]+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

We match this with the Taylor series expansion:

$$
\begin{aligned}
\frac{y(x+h)-y(x)}{h} & =y^{\prime}(x)+\frac{1}{2} h y^{\prime \prime}(x)+\frac{1}{6} h^{2} y^{\prime \prime \prime}(x)+\mathcal{O}\left(h^{3}\right) \\
& =f+\frac{1}{2} h F_{1}+\frac{1}{6} h^{2}\left(F_{1} f_{y}+F_{2}\right)+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

This yields:

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =1 \\
c_{2} a_{2}+c_{3} a_{3} & =\frac{1}{2} \\
c_{2} a_{2}^{2}+c_{3} a_{3}^{2} & =\frac{1}{3} \\
c_{3} a_{2} b_{32} & =\frac{1}{6} .
\end{aligned}
$$

Solving this system of four equations for the six unknowns: $c_{1}, c_{2}, c_{3}, a_{2}, a_{3}, b_{32}$, we obtain a two-parameter family of 3-stage Runge-Kutta methods. We highlight two notable examples:
(i) Heun's method corresponds to

$$
c_{1}=\frac{1}{4}, \quad c_{2}=0, \quad c_{3}=\frac{3}{4}, \quad a_{2}=\frac{1}{3}, \quad a_{3}=\frac{2}{3}, \quad b_{32}=\frac{2}{3},
$$

yielding

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{1}{4} h\left(k_{1}+3 k_{3}\right) \\
k_{1} & =f\left(x_{n}, y_{n}\right) \\
k_{2} & =f\left(x_{n}+\frac{1}{3} h, y_{n}+\frac{1}{3} h k_{1}\right), \\
k_{3} & =f\left(x_{n}+\frac{2}{3} h, y_{n}+\frac{2}{3} h k_{2}\right) .
\end{aligned}
$$

(ii) Standard third-order Runge-Kutta method. This is arrived at by selecting

$$
c_{1}=\frac{1}{6}, \quad c_{2}=\frac{2}{3}, \quad c_{3}=\frac{1}{6}, \quad a_{2}=\frac{1}{2}, \quad a_{3}=1, \quad b_{32}=2,
$$

yielding

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{1}{6} h\left(k_{1}+4 k_{2}+k_{3}\right) \\
k_{1} & =f\left(x_{n}, y_{n}\right) \\
k_{2} & =f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \\
k_{3} & =f\left(x_{n}+h, y_{n}-h k_{1}+2 h k_{2}\right) .
\end{aligned}
$$

## Four-stage Runge-Kutta methods

For $R=4$, an analogous argument leads to a two-parameter family of four-stage Runge-Kutta methods of order four. A particularly popular example from this family is:

$$
y_{n+1}=y_{n}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{n}, y_{n}\right) \\
& k_{2}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \\
& k_{3}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right), \\
& k_{4}=f\left(x_{n}+h, y_{n}+h k_{3}\right) .
\end{aligned}
$$

In this lecture, we have constructed $R$-stage Runge-Kutta methods of order of accuracy $\mathcal{O}\left(h^{R}\right), R=1,2,3,4$.

Question: Is there an $R$ stage method of order $R$ for $R \geq 5$ ?

The answer to this question is unfortunately negative: in a series of papers John Butcher showed that for $R=5,6,7,8,9$, the highest order that can be attained by an $R$-stage Runge-Kutta method is, respectively, 4,5,6,6,7, and that for $R \geq 10$ the highest order is $\leq R-2$.

