Numerical Solution of Differential Equations I

Endre Süli

Mathematical Institute University of Oxford 2019

Lecture 7

Convergence

What matters most from the practical point of view is that the numerical approximations y_n at the mesh-points x_n , n = 0, ..., N, are close to those of the analytical solution $y(x_n)$ at these points, and that the **global error** $e_n = y(x_n) - y_n$ between the numerical approximation y_n and the exact solution-value $y(x_n)$ tends to 0 when the step size $h \rightarrow 0$.

In order to formalise the desired behaviour, we introduce the following definition.

Definition

A linear multistep method is said to be **convergent** if, for all initial-value problems y' = f(x, y), $y(x_0) = y_0$, subject to the hypotheses of the Cauchy–Picard theorem, we have that

$$\lim_{\substack{h\to 0\\nh=x-x_0}} y_n = y(x) \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

holds for all $x \in [x_0, X_M]$ and for all solutions $\{y_n\}_{n=0}^N$ generated by the *k*-step method with **consistent starting conditions**, i.e., with starting conditions $y_s = \eta_s(h)$, s = 0, 1, ..., k - 1, for which $\lim_{h\to 0} \eta_s(h) = y_0$, s = 0, 1, ..., k - 1. We shall investigate the interplay between

- zero-stability,
- consistency, and
- convergence.

The key result is **Dahlquist's Equivalence Theorem**, which states that for a consistent linear multi-step method zero-stability is necessary and sufficient for convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Necessary conditions for convergence

We show that both zero-stability and consistency are necessary for convergence.

Theorem

A necessary condition for the convergence of a linear multi-step method is that it be zero-stable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PROOF:

Suppose that a linear multi-step method is convergent; we wish to show that it is then zero-stable.

We consider the initial-value problem y' = 0, y(0) = 0, on the interval $[0, X_M]$, $X_M > 0$, whose solution is, trivially, $y(x) \equiv 0$.

Applying the method to this problem yields the difference equation

$$\alpha_k y_{n+k} + \alpha_{k-1} y_{n+k-1} + \dots + \alpha_0 y_n = 0.$$
⁽²⁾

As the method is assumed to be convergent, for any x > 0, we have

$$\lim_{\substack{h\to 0\\ h\to x}} y_n = 0, \tag{3}$$

for all solutions of (2) s.t. $y_s = \eta_s(h)$, $s = 0, \ldots, k-1$, where

r

$$\lim_{h \to 0} \eta_s(h) = 0, \qquad s = 0, 1, \dots, k - 1.$$
 (4)

(1) Let $z = r e^{i\phi}$, be a root of the first characteristic polynomial $\rho(z)$; $r \ge 0$, $0 \le \phi < 2\pi$. It is then easy to verify that the numbers

$$y_n = hr^n \cos n\phi$$

define a solution to (2) satisfying (4). [Hint: $\operatorname{Re}(z^n \rho(z)) = 0$.]

CASE 1.1 If $\phi \neq 0$ and $\phi \neq \pi$, then

$$\frac{y_n^2 - y_{n+1}y_{n-1}}{\sin^2 \phi} = h^2 r^{2n}.$$

Since the left-hand side of this converges to 0 as $h \rightarrow 0$, $n \rightarrow \infty$, nh = x, the same must be true of the right-hand side; therefore,

$$\lim_{n\to\infty}\left(\frac{x}{n}\right)^2r^{2n}=0.$$

This implies that $r \leq 1$. Thus we have proved that $|z| \leq 1$.

CASE 1.2 If, on the other hand, $\phi = 0$ or $\phi = \pi$, then

$$|y_n| = hr^n |\cos n\phi| = hr^n = \frac{x}{n}r^n$$

As $y_n \to 0$ when $h \to 0$ and $n \to \infty$, the same must be true of the right-hand side. Thus, again, necessarily $r \le 1$, i.e., $|z| \le 1$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

(2) Next we prove that any root of the first characteristic polynomial that lies on the unit circle must be *simple*.

Assume, for contradiction, that $z = re^{i\phi}$ is a *multiple* root of $\rho(z)$, with |z| = 1 (and therefore r = 1) and $0 \le \phi < 2\pi$.

We shall prove below that this contradicts our assumption that the method (2) is convergent. It is easy to check that the numbers

$$y_n = h^{1/2} n r^n \cos n\phi \tag{5}$$

define a solution to (2). [Hint: $\operatorname{Re}(nz^n\rho(z) + z^{n+1}\rho'(z)) = 0.$]

In addition, (4) holds because

$$|\eta_{s}(h)| = |y_{s}| \leq h^{1/2} s \leq h^{1/2} (k-1), \qquad s = 0, \ldots k-1.$$

CASE 2.1 If $\phi \neq 0$ and $\phi \neq \pi$, then

$$\frac{z_n^2 - z_{n+1} z_{n-1}}{\sin^2 \phi} = r^{2n},$$
 (6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $z_n = n^{-1}h^{-1/2}y_n = h^{1/2}x^{-1}y_n$.

Since, by (3), $\lim_{n\to\infty} z_n = 0$, it follows that the left-hand side of (6) converges to 0 as $n \to \infty$.

But then the same must be true of the right-hand side of (6); however, the right-hand side of (6) cannot converge to 0 as $n \rightarrow \infty$, since r = 1.

Thus we have reached a contradiction.

CASE 2.2 If, on the other hand, $\phi = 0$ or $\phi = \pi$, it follows from (5) with h = x/n that

$$|y_n| = x^{1/2} n^{1/2} r^n.$$
(7)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Since, by assumption, |z| = 1 (and therefore r = 1), we deduce from (7) that $\lim_{n\to\infty} |y_n| = \infty$, which again contradicts (3).

Theorem

A necessary condition for the convergence of a linear multi-step method is that it be consistent.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

PROOF:

Let us suppose that a linear multi-step method is convergent; we wish to show that it is then consistent.

Let us first show that $C_0 = 0$.

We consider the initial-value problem y' = 0, y(0) = 1, on the interval $[0, X_M]$, $X_M > 0$, whose solution is, trivially, $y(x) \equiv 1$.

Applying the method to this gives:

$$\alpha_k y_{n+k} + \alpha_{k-1} y_{n+k-1} + \dots + \alpha_0 y_n = 0.$$
(8)

We supply "exact" starting values for the numerical method; i.e., we choose $y_s = 1$, s = 0, ..., k - 1. As, by hypothesis, the method is convergent, we deduce that

$$\lim_{\substack{h \to 0 \\ nh = x}} y_n = 1. \tag{9}$$

Since in the present case y_n is independent of the choice of h, (9) is equivalent to saying that

$$\lim_{n \to \infty} y_n = 1. \tag{10}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Passing to the limit $n \to \infty$ in (8), we deduce that

1

$$\alpha_k + \alpha_{k-1} + \dots + \alpha_0 = 0. \tag{11}$$

By the definition of C_0 , (11) is equivalent to $C_0 = 0$.

To show that $C_1 = 0$, we consider the initial-value problem y' = 1, y(0) = 0, on the interval $[0, X_M]$, $X_M > 0$; hence, y(x) = x.

The method applied to this now becomes

$$\alpha_{k}y_{n+k} + \alpha_{k-1}y_{n+k-1} + \dots + \alpha_{0}y_{n} = h(\beta_{k} + \beta_{k-1} + \dots + \beta_{0}), (12)$$

where $X_{M} - x_{0} = X_{M} - 0 = Nh$ and $1 \le n \le N - k$.

For a convergent method every solution of (12) satisfying

$$\lim_{h \to 0} \eta_{s}(h) = 0, \qquad s = 0, 1, \dots, k - 1,$$
(13)

where $y_s = \eta_s(h)$, s = 0, 1, ..., k - 1, must also satisfy

$$\lim_{\substack{h \to 0 \\ nh = x}} y_n = x.$$
(14)

By the previous theorem zero-stability is necessary for convergence; so the first characteristic polynomial $\rho(z)$ of the method does not have a multiple root on the unit circle |z| = 1; therefore

$$\rho'(1) = k\alpha_k + \cdots + 2\alpha_2 + \alpha_1 \neq 0.$$

Let the sequence $\{y_n\}_{n=0}^N$ be defined by $y_n = Knh$, where

$$K = \frac{\beta_k + \dots + \beta_1 + \beta_0}{k\alpha_k + \dots + 2\alpha_2 + \alpha_1};$$
(15)

this sequence clearly satisfies (13) and is the solution of (12).

Furthermore, (14) implies that

$$x = y(x) = \lim_{\substack{h \to 0 \\ nh = x}} y_n = \lim_{\substack{h \to 0 \\ nh = x}} Knh = Kx,$$

and therefore K = 1. Hence, from (15),

$$C_1 = (k\alpha_k + \dots + 2\alpha_2 + \alpha_1) - (\beta_k + \dots + \beta_1 + \beta_0) = 0.$$

Sufficient conditions for convergence

Theorem

For a linear multi-step method that is consistent with the ordinary differential equation y' = f(x, y), where f is assumed to satisfy a Lipschitz condition, and starting with consistent starting conditions, zero-stability is sufficient for convergence.

[Proof (optional): See the Lecture Notes.]

By combining the last three theorems we arrive at the following important result.

Germund Dahlquist (16 January 1925 – 8 February 2005)

Theorem (Dahlquist's Theorem)

For a linear multi-step method that is consistent with the ordinary differential equation y' = f(x, y) where f satisfies the Lipschitz condition, and starting with consistent initial data, zero-stability is necessary and sufficient for convergence. Moreover if the solution y(x) has continuous derivative of order (p + 1) and consistency error $\mathcal{O}(h^p)$, then the global error $e_n = y(x_n) - y_n$ is also $\mathcal{O}(h^p)$.

Remark

By Dahlquist's theorem, if a linear multi-step method is not zero-stable then its global error cannot be made arbitrarily small by taking the mesh size h sufficiently small for any sufficiently accurate initial data.

In fact, if the root condition is violated then there exists a solution to the linear multi-step method which will grow by an arbitrarily large factor in a fixed interval of x, however accurate the starting conditions are. This highlights the importance of zero-stability in practical computations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00