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The discrete maximum principle

Theorem (Discrete maximum principle for the θ-scheme)

The θ-scheme for the Dirichlet initial-boundary-value problem for the heat
equation, with 0 ≤ θ ≤ 1 and µ(1− θ) ≤ 1

2 , yields a sequence of numerical
approximations {Um

j }j=0,...,J; m=0,...,M satisfying

Umin ≤ Um
j ≤ Umax

where

Umin = min
{

min{Um
0 }Mm=0, min{U0

j }Jj=0, min{Um
J }Mm=0

}
and

Umax = max
{

max{Um
0 }Mm=0, max{U0

j }Jj=0, max{Um
J }Mm=0

}
.
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Proof: We rewrite the θ-scheme as

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j ,

and recall that, by hypothesis,

θµ ≥ 0 (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0.

Suppose that U attains its maximum value at an internal mesh point
Um+1
j , 1 ≤ j ≤ J − 1, 0 ≤ m ≤ M − 1. If this is not the case, the proof is

complete.

We define
U? = max{Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, U

m
j }.
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Then,

(1 + 2θµ)Um+1
j ≤ 2θµU? + 2(1− θ)µU?

+ [1− 2(1− θ)µ]U? = (1 + 2θµ)U?,

and therefore
Um+1
j ≤ U?.

However, also,

U? ≤ Um+1
j ,

as Um+1
j is assumed to be the overall maximum value. Hence,

Um+1
j = U?.
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Thus the maximum value is also attained at all mesh points neighbouring
(xj , tm+1) present in the scheme.

The same argument applies to these neighbouring points, and we can then
repeat this process until the boundary at x = a or x = b or at t = 0 is
reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.

Similarly, the minimum is attained at a boundary point. �
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In summary then, for

µ(1− θ) ≤ 1

2

the θ-scheme satisfies the discrete maximum principle.

This is clearly more demanding than the `2-stability condition:

µ(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

For example, the Crank-Nicolson scheme is unconditionally stable in the `2

norm, yet it only satisfies the discrete maximum principle when
µ := ∆t

(∆x)2 ≤ 1.
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Convergence of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the θ-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j .

The scheme is considered subject to the initial condition

U0
j = u0(xj), j = 1, . . . , J − 1,

and the boundary conditions

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.
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The consistency error for the θ-scheme is defined by

Tm
j =

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2

− θ
um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where umj ≡ u(xj , tm),

and therefore

(1 + 2θµ) um+1
j = θµ

(
um+1
j+1 + um+1

j−1

)
+ (1− θ)µ

(
umj+1 + umj−1

)
+ [1− 2(1− θ)µ] umj + ∆tTm

j .
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Define the global error, that is the discrepancy at a mesh-point between
the exact solution and its numerical approximation, by

emj := u(xj , tm)− Um
j .

It then follows that

em+1
0 = 0, em+1

J = 0, e0
j = 0, j = 0, . . . , J,

and

(1 + 2θµ) em+1
j = θµ

(
em+1
j+1 + em+1

j−1

)
+ (1− θ)µ

(
emj+1 + emj−1

)
+ [1− 2(1− θ)µ] emj + ∆tTm

j .

We define,
Em = max

0≤j≤J
|emj | and Tm = max

0≤j≤J
|Tm

j |.
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As, by hypothesis,

θµ ≥ 0, (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0,

we have that

(1 + 2θµ)Em+1 ≤ 2θµEm+1 + Em + ∆tTm.

Hence,
Em+1 ≤ Em + ∆t Tm.

As E 0 = 0, upon summation,

Em ≤ ∆t
m−1∑
n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M

max
1≤j≤J−1

|Tm
j |,

which then implies that

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ T max

1≤j≤J−1
max

0≤m≤M
|Tm

j |.
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Recall that the consistency error of the θ-scheme is

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
for θ = 1/2,

O
(
(∆x)2 + ∆t

)
for θ 6= 1/2.

For the explicit/implicit Euler schemes, for which

Tm
j = O

(
(∆x)2 + ∆t

)
,

one has the following bound on the global error:

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 + ∆t

)
,

while for the Crank–Nicolson scheme, which has consistency error

Tm
j = O

(
(∆x)2 + (∆t)2

)
,

one has

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 + (∆t)2

)
.
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Finite difference approximation in two space-dimensions

[OPTIONAL HEREAFTER]

Consider the heat equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (x , y) ∈ Ω := (a, b)× (c , d), t ∈ (0,T ],

subject to the initial condition

u(x , y , 0) = u0(x , y), (x , y) ∈ [a, b]× [c , d ],

and the Dirichlet boundary condition

u|∂Ω = B(x , y , t), (x , y) ∈ ∂Ω, t ∈ (0,T ],

where ∂Ω is the boundary of Ω.

We begin by considering the explicit Euler finite difference scheme for this
problem.
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The explicit Euler scheme

Let
δ2
xUij := Ui+1,j − 2Uij + Ui−1,j ,

and
δ2
yUij := Ui ,j+1 − 2Uij + Ui ,j−1.

Let, further, ∆x := (b−a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and define

xi = a + i∆x , i = 0, . . . , Jx ,

yj = b + j∆y , j = 0, . . . , Jy ,

tm = m∆t, m = 0, . . . ,M.
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The explicit Euler finite difference scheme for the unsteady heat equation
on the space-time domain Ω× [0,T ] is then:

Um+1
ij − Um

ij

∆t
=
δ2
xU

m
ij

(∆x)2
+
δ2
yU

m
ij

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1,

subject to
the initial condition

U0
ij = u0(xi , yj), i = 0, . . . , Jx , j = 0, . . . , Jy ,

and the boundary condition

Um
ij = B(xi , yj , tm), at the boundary mesh points, for m = 1, . . . ,M.
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The implicit Euler scheme

Let ∆x := (b − a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and define
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yj = b + j∆y , j = 0, . . . , Jy ,
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subject to the initial condition

U0
ij = u0(xi , yj), i = 0, . . . , Jx , j = 0, . . . , Jy ,

and the boundary condition

Um+1
ij = B(xi , yj , tm+1), at the boundary mesh points,

for m = 0, . . . ,M − 1.
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The θ-scheme

Let ∆x := (b − a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and, for
θ ∈ [0, 1], consider the finite difference scheme

Um+1
ij − Um

ij

∆t
= (1− θ)

(
δ2
xU

m
ij

(∆x)2
+
δ2
yU

m
ij

(∆y)2

)
+ θ

(
δ2
xU

m+1
ij

(∆x)2
+
δ2
yU

m+1
ij

(∆y)2

)

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1,
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ij = u0(xi , yj), i = 0, . . . , Jx , j = 0, . . . , Jy ,

and the boundary condition

Um+1
ij = B(xi , yj , tm+1), at the boundary mesh points,

for m = 0, . . . ,M − 1.
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The θ-scheme

Let ∆x := (b − a)/Jx , ∆y := (d − c)/Jy , ∆t := T/M, and, for
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The alternating direction (ADI) method

Our objective here is to propose an ‘economical’ scheme, which replaces
the tedious task of solving such large systems of algebraic equations with
the successive solution of smaller linear systems in the x and y co-ordinate
directions respectively, alternating between solves in the x and y
co-ordinate directions.

The resulting scheme is called the alternating direction (or ADI) scheme.

We describe its construction starting from the Crank–Nicolson scheme.
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Consider the Crank–Nicolson scheme, which has the form:(
1− 1

2
µxδ

2
x − µy

1

2
δ2
y

)
Um+1
ij =

(
1 +

1

2
µxδ

2
x + µy

1

2
δ2
y

)
Um
ij ,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to
the initial condition

U0
ij = u0(xi , yj), i = 0, . . . , Jx , j = 0, . . . , Jy ,

and the boundary condition

Um
ij = B(xi , yj , tm), at the boundary mesh points, for m = 1, . . . ,M.
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We modify this scheme (with the same initial/boundary cond’s) to:(
1− 1

2
µxδ

2
x

)(
1− µy

1

2
δ2
y

)
Um+1
ij =

(
1 +

1

2
µxδ

2
x

)(
1 + µy

1

2
δ2
y

)
Um
ij .

By introducing the intermediate level Um+1/2, we can rewrite the last
equality in the following equivalent form:(

1− 1

2
µxδ

2
x

)
U

m+1/2
ij =

(
1 +

1

2
µyδ

2
y

)
Um
ij , (1)(

1− 1

2
µyδ

2
y

)
Um+1
ij =

(
1 +

1

2
µxδ

2
x

)
U

m+1/2
ij . (2)

The equivalence is seen by applying(
1 +

1

2
µxδ

2
x

)
to eq. (1) and

(
1− 1

2
µxδ

2
x

)
to eq. (2).
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The stability in the `2 norm of the ADI scheme (for the pure initial-value
problem now, i.e. with no boundary conditions assumed) is easily seen by
substituting the Fourier mode

Um
ij = [λ(kx , ky )]meı(kxxi+kyyj )

into the scheme.

Hence,

λ(kx , ky ) =

(
1− 2µx sin2 1

2kx∆x
) (

1− 2µy sin2 1
2kx∆y

)(
1 + 2µx sin2 1

2kx∆x
) (

1 + 2µy sin2 1
2kx∆y

) .
Clearly,

|λ(kx , ky )| ≤ 1 ∀(kx , ky ) ∈
[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
.

Thus, the ADI scheme is unconditionally stable in the `2 norm.
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The consistency error of the ADI scheme can be shown (again, after
tedious Taylor series expansions) to be

Tm
ij = O

(
(∆x)2 + (∆y)2 + (∆t)2

)
.

The ADI scheme satisfies a discrete maximum principle for

µx ≤ 1 and µy ≤ 1.

The proof of this is similar to the case of the θ-scheme in one
space-dimension1.

1See the textbook by K.W. Morton and D.F. Mayers, Numerical Solution of Partial
Differential Equations: An Introduction, 2nd Edition, CUP, 2005. ISBN:
978-0-521607-93-3. pp. 64–65.
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