
B5.3 Viscous Flow: Sheet 1

Q1 Vector identities and the divergence theorem.

(a) For a differentiable scalar field f(x) and a differentiable vector field G(x) = Gi(x)ei, the differential operators
introduced in “Calculus in Three-Dimensions and Applications” may be written using the summation convention
in the form

∇f = ei
∂f

∂xi
, ∇ ·G =

∂Gj
∂xj

, ∇ ∧G = ek ∧
∂G

∂xk
, (u ·∇) f = ul

∂f

∂xl
, ∇2f =

∂2 f

∂xm∂xm
,

where e1, e2, e3 are unit vectors along the axes Ox1, Ox2, Ox3. Using these definitions, the vector identity

(a ∧ b) ∧ c = (a · c)b− (b · c)a

and the summation convention, prove the following identities for any differentiable scalar field f and any
differentiable vector fields u and v:

(i) ∇ · (fu) = (u ·∇)f + f(∇ · u);

(ii) (u ·∇)u = ∇
(

1
2 |u|

2
)

+ (∇ ∧ u) ∧ u;

(iii) ∇ ∧ (u ∧ v) = (∇ · v)u + (v ·∇)u− (∇ · u)v − (u ·∇)v;

(iv) ∇2u = ∇ (∇ · u)−∇ ∧ (∇ ∧ u).

(b) The faces of a tetrahedron lie in the planes x1 = 0, x2 = 0, x3 = 0 and a · x = 1, where a = aiei is a unit vector
such that aj > 0 for j = 1, 2, 3. Let Aj be the area of the face in the plane xj = 0 and let A be the area of the
slanted face with unit normal a. State the divergence theorem and by applying it to ej , show that Aj = ajA.

Q2 Euler’s identity and Reynolds’ transport theorem. Suppose that x = (x1, x2, x3) denotes the Eularian
coordinates of a fluid particle with Lagrangian coordinates X = (X1, X2, X3), i.e.

Dx

Dt
= u, with x = X at t = 0,

where D
Dt

= ∂
∂t

∣∣∣
X

is the convective derivative and u = (u1, u2, u3) is the velocity. Let J be the Jacobian

J =
∂(x1, x2, x3)

∂(X1, X2, X3)
= εijk

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk
,

where εijk is the Levi-Civita symbol.

(a) (i) Use the chain rule for differentiation to show that

D

Dt

(
∂xn
∂Xi

)
=
∂un
∂xm

∂xm
∂Xi

.

(ii) Hence show that

DJ

Dt
=

∂u1

∂xm

∂(xm, x2, x3)

∂(X1, X2, X3)
+
∂u2

∂xm

∂(x1, xm, x3)

∂(X1, X2, X3)
+
∂u3

∂xm

∂(x1, x2, xm)

∂(X1, X2, X3)
.

(iii) Using the fact that a determinant is zero if it has repeated rows, deduce Euler’s identity

DJ

Dt
= J∇ · u.

(b) Let f(x, t) be a differentiable function of position x and time t. Show that the rate of change of f following a
material fluid element is given by

Df

Dt
=
∂f

∂t
+ (u ·∇)f.

(c) By writing ∫∫∫
V (t)

f(x, t) dx1dx2dx3 =

∫∫∫
V (0)

f(x, t)J dX1dX2dX3,

prove Reynolds Transport Theorem that

d

dt

∫∫∫
V (t)

f dV =

∫∫∫
V (t)

∂f

∂t
+ ∇ · (fu) dV

for any continuously differentiable function f(x, t), where V (t) is a material volume of fluid and dV = dx1dx2dx3.
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(d) By applying the principle of conservation of mass to a material volume V (t), derive the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0

for a compressible fluid with density ρ, stating any assumptions that you make about the smoothness of ρ and
u. Hence show that a corollary of Reynolds’ transport theorem for a compressible fluid is that

d

dt

∫∫∫
V (t)

ρF dV =

∫∫∫
V (t)

ρ
DF

Dt
dV

for any continuously differentiable function F (x, t).

Q3 The stress vector and stress tensor.

(a) Define carefully the stress vector t(x, t,n) and the stress tensor σij(x, t). In the remainder of this question you
may assume that

t(x, t,−n) = −t(x, t,n).

What is the physical significance of this expression?

(b) Fluid flows outside a rigid solid rectangular box R = {x : 0 < xj < j for j = 1, 2, 3}. Let F±
i (t) denote the

surface force exerted by the fluid on the face with outward pointing unit normal ±ei. Explain briefly why

F+
3 (t) =

∫ 2

0

∫ 1

0

t(x1e1 + x2e2 + 3e3, t, e3) dx1dx2.

Write down similar expressions for the surface force exerted by the fluid on each of the other faces of the box.
In terms of the stress tensor σij , write down an expression for the x1-component of the net surface force exerted
by the fluid on the box.

Q4 Derivation of the incompressible Navier-Stokes equations.

(a) Newton’s second law for a material volume V (t) that has boundary ∂V (t) with outward unit normal n is given
by

d

dt

∫∫∫
V (t)

ρudV =

∫∫
∂V (t)

t(n) dS +

∫∫∫
V (t)

ρFdV,

where ρ is the density, u = uiei is the velocity and F = Fiei is an external body force acting per unit mass.
Explain the physical significance of each term in this expression.

(b) Use the corollary to Reynolds’ transport theorem, Cauchy’s stress theorem and the divergence theorem to derive
Cauchy’s momentum equation in the form

ρ
Dui
Dt

=
∂σij
∂xj

+ ρFi.

(c) Use the continuity equation to show that a flow is incompressible if and only if

∇ · u = 0.

(d) Define the rate-of-strain tensor eij . State sufficient conditions for an incompressible fluid to be Newtonian, that
is

σij = −pδij + 2µeij ,

where p is the pressure and µ is the viscosity.

(e) For an incompressible, constant viscosity, Newtonian fluid, deduce the Navier-Stokes equations in the form

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇2u + ρF, ∇ · u = 0. (1)
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Q5 The vorticity-transport equation.

(a) Show that the momentum equation (1) may be written in the form

∂u

∂t
+ ω ∧ u + ∇

(
p

ρ
+

1

2
|u|2

)
= −ν∇ ∧ ω + F,

where ω = ∇ ∧ u is the vorticity and ν = µ/ρ is the coefficient of kinematic viscosity.

(b) Suppose that F is a conservative vector field. By taking the curl of the momentum equation as written above
derive the vorticity-transport equation

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u = ν∇2ω.

(c) Suppose that in addition the flow is two-dimensional with velocity u = u(x, y, t)i + v(x, y, t)j.

(i) Show that the vorticity ω = ω(x, y, t)k, where ω satisfies the two-dimensional vorticity-transport equation

Dω

Dt
= ν∇2ω.

Explain the physical significance of each term in this expression. Is vorticity conserved following the fluid in
a two-dimensional viscous flow?

(ii) Show that there is a streamfunction ψ(x, y, t) in terms of which the velocity u, vorticity ω and two-
dimensional vorticity-transport equation are given by

u =
∂ψ

∂y
i− ∂ψ

∂x
j, −ω = ∇2ψ ≡ ∂2ψ

∂x2
+
∂2ψ

∂y2
,

∂ω

∂t
+
∂(ψ, ω)

∂(y, x)
= ν∇2ω.

(iii) By setting ψ = ψ(r, θ, t) in plane polar coordinates (r, θ), writing u = ∇ ∧ (ψk) and employing the chain
rule

∂(ψ, ω)

∂(θ, r)
=
∂(ψ, ω)

∂(y, x)
· ∂(y, x)

∂(θ, r)
,

show that the formulation in (c)(ii) becomes

u =
1

r

∂ψ

∂θ
er −

∂ψ

∂r
eθ, −ω = ∇2ψ ≡ 1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
,

∂ω

∂t
+

1

r

∂(ψ, ω)

∂(θ, r)
= ν∇2ω,

where er and eθ are unit vectors in the r- and θ-directions.

Q6 The energy equation and dissipation.

(a) Assuming there is an external body force F = Fiei acting per unit mass (e.g. gravity) and that there are
no external energy sources (e.g. microwave heating), conservation of energy for a material volume V (t) of a
compressible conducting fluid is given by

d

dt

(∫∫∫
V (t)

ρcvT dV +

∫∫∫
V (t)

1

2
ρu 2

i dV

)
=

∫∫
∂V (t)

k
∂T

∂xj
nj dS +

∫∫∫
V (t)

ρuiFi dV +

∫∫
∂V (t)

uiσijnj dS,

where T is the temperature, cv the specific heat and k is the thermal conductivity. Explain the physical
significance of each term in this expression.

(b) Assuming that cv and k are constant, use the corollary to Reynolds’ transport theorem and the divergence
theorem to derive the energy equation in the form

ρcv
DT

Dt
= k∇2T + Φ; Φ = σij

∂ui
∂xj

.

For an incompressible Newtonian fluid, use the the symmetry of the rate-of-strain tensor eij to show that the
dissipation is given by

Φ =
µ

2

3∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

.

(c) An incompressible Newtonian fluid flows in an insulated container that occupies a region Ω. Use the energy
equation to show that

d

dt

∫∫∫
Ω

ρcvT dV =

∫∫∫
Ω

Φ dV.

What is the physical significance of this expression?
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