B5.3 Viscous Flow: Sheet 3

- Q1 Thermal boundary layer on a semi-infinite flat plate. Consider the two-dimensional steady heat convectionconduction problem in which *inviscid* fluid with constant velocity $U\mathbf{i}$ and temperature T_{∞} flows past a 'hot' semiinfinite plate at y = 0, x > 0, which is held at constant temperature T_p . Assume that the density ρ , specific heat c_v and thermal conductivity k are constant.
 - (a) Starting from the conservation of energy equation in sheet 1, Q6(b) show that the temperature T(x, y) satisfies

$$U\frac{\partial T}{\partial x} = \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right),\,$$

where $\kappa = k/\rho c_v$ is the constant thermal diffusivity. By using the dimensionless variables

$$x^* = \frac{x}{L}, \ y^* = \frac{y}{L}, \ T^* = \frac{T - T_{\infty}}{T_p - T_{\infty}},$$

where L is an arbitrary length scale, rewrite the problem in dimensionless form (dropping the stars * on the dimensionless variables):

$$\frac{\partial T}{\partial x} = \frac{1}{Pe} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right),$$

with T = 1 on y = 0, x > 0 and $T \to 0$ as $x^2 + y^2 \to \infty$. Explain the physical significance of the *Péclet number* $Pe = LU/\kappa$ in terms of the timescales for conduction and convection of heat.

(b) Given that it is possible to find a similarity solution in the form $T(x,y) = f(\eta)$, where $x + iy = (\xi + i\eta)^2/Pe$ and $f(\eta)$ satisfies

for
$$\eta > 0$$
, $f'' + 2\eta f' = 0$; $f(0) = 1$, $f(\infty) = 0$,

show that $T(x, y) = \operatorname{erfc}(\eta)$. Deduce that the isotherms are parabolic and indicate on a diagram the regions of the (x, y)-plane where T = O(1) as $Pe \to \infty$.

(c) Deduce from the governing equations that for $Pe \gg 1$ there is a boundary layer on the plate in which $Y = Pe^{1/2}y = O(1)$ and $T \sim T_0(x, Y)$, where

$$\frac{\partial T_0}{\partial x} = \frac{\partial^2 T_0}{\partial Y^2},\tag{1}$$

with $T_0(x,0) = 1$, $T_0(x,\infty) = 0$ for x > 0. Hence show that $T_0 = \operatorname{erfc} (Y/(4x)^{1/2})$.

- (d) Finally, show that the exact and asymptotic solution are in agreement in the boundary layer, *i.e.* show that $T(x, Pe^{-1/2}Y) \sim T_0(x, Y)$ as $Pe \to \infty$, with Y = O(1).
- Q2 High-Reynolds number flow past a semi-infinite flat plate. Consider the two-dimensional steady viscous flow of a uniform stream with velocity Ui past a semi-infinite plate at y = 0, x > 0.
 - (a) Starting from the vorticity-streamfunction formulation in sheet 1, Q5(c)(ii) show that the dimensionless problem for the streamfunction $\psi(x, y)$ is given by

$$\frac{\partial(\psi, \boldsymbol{\nabla}^2 \psi)}{\partial(y, x)} = \frac{1}{Re} \boldsymbol{\nabla}^4 \psi, \tag{2}$$

with (upon taking ψ to be equal to zero on the plate)

$$\psi = \frac{\partial \psi}{\partial y} = 0 \text{ on } y = 0, \ x > 0; \quad \frac{\partial \psi}{\partial y} \to 1 \text{ as } x^2 + y^2 \to \infty,$$
(3)

where the dimensionless variables x, y, ψ and the Reynolds number Re should be defined.

(b) When $Re = \infty$, show that $\psi = y$ satisfies (??) and (??) except for the no-slip condition. When Re is large but finite, show that there is a boundary layer on the plate in which $Y = Re^{1/2}y = O(1)$ and $\psi \sim Re^{-1/2}\Psi$, where $\Psi(x, Y)$ satisfies the boundary layer equation

$$\frac{\partial \Psi}{\partial Y} \frac{\partial^3 \Psi}{\partial x \partial Y^2} - \frac{\partial \Psi}{\partial x} \frac{\partial^3 \Psi}{\partial Y^3} = \frac{\partial^4 \Psi}{\partial Y^4}$$

together with the boundary and matching conditions

$$\Psi = \frac{\partial \Psi}{\partial Y} = 0 \text{ on } Y = 0, \ x > 0; \quad \frac{\partial \Psi}{\partial Y} \to 1 \text{ as } Y \to \infty.$$

(c) Deduce that

$$\frac{\partial\Psi}{\partial Y}\frac{\partial^2\Psi}{\partial x\partial Y} - \frac{\partial\Psi}{\partial x}\frac{\partial^2\Psi}{\partial Y^2} = \frac{\partial^3\Psi}{\partial Y^3},\tag{4}$$

and hence show that there is a similarity solution of the form $\Psi(x, Y) = x^{\alpha} f(\eta)$, $Y = x^{\beta} \eta$ provided $\alpha = \beta = 1/2$ and $f(\eta)$ satisfies Blasius' equation

$$f''' + \frac{1}{2}ff'' = 0,$$

with f(0) = f'(0) = 0 and $f'(\infty) = 1$.

Q3 Viscous boundary layer with a non-uniform slip velocity. An incompressible Newtonian fluid flows past a solid boundary which lies on the positive x-axis. The flow is two-dimensional and governed by the dimensionless steady incompressible Navier-Stokes equations

$$(\mathbf{u} \cdot \boldsymbol{\nabla})\mathbf{u} = -\boldsymbol{\nabla}p + \frac{1}{Re}\boldsymbol{\nabla}^2\mathbf{u}, \ \boldsymbol{\nabla} \cdot \mathbf{u} = 0,$$
(5)

where $\mathbf{u} = u(x, y)\mathbf{i} + v(x, y)\mathbf{j}$ is the velocity, p(x, y) is the pressure and Re is the Reynolds number. Suppose that when $Re = \infty$, the external *inviscid irrotational* flow generates a non-uniform slip velocity $U_s(x)$ on the plate.

(a) Show that, when Re is large but finite, the flow near the plate only differs appreciably from $U_s(x)$ in a boundary layer in which $Y = Re^{1/2}y = O(1)$, $v \sim Re^{-1/2}V(x,Y)$ and Prandtl's boundary layer equations

$$u\frac{\partial u}{\partial x} + V\frac{\partial u}{\partial Y} = -\frac{\partial p}{\partial x} + \frac{\partial^2 u}{\partial Y^2}, \ 0 = -\frac{\partial p}{\partial Y}, \ \frac{\partial u}{\partial x} + \frac{\partial V}{\partial Y} = 0$$

pertain. Explain briefly why the boundary and far-field matching conditions are given by

u = V = 0 on Y = 0, x > 0; $u \to U_s(x)$ as $Y \to \infty$,

and deduce that the pressure gradient $\partial p/\partial x = -U_s(x)U'_s(x)$.

(b) Show that there is a streamfunction $\Psi(x, Y)$ satisfying

$$\frac{\partial\Psi}{\partial Y}\frac{\partial^2\Psi}{\partial x\partial Y} - \frac{\partial\Psi}{\partial x}\frac{\partial^2\Psi}{\partial Y^2} = \frac{\partial^3\Psi}{\partial Y^3} + U_s(x)U'_s(x),\tag{6}$$

and write down the boundary conditions for Ψ .

(c) Suppose there is a similarity solution of the form

$$\Psi(x,Y) = U_s(x)g(x)f(\eta), \ Y = g(x)\eta.$$

(i) Show that the boundary layer equation (??) becomes

$$f'''(\eta) + \alpha(x)f(\eta)f''(\eta) + \beta(x)(1 - f'(\eta)^2) = 0,$$

where $\alpha(x) = g(x)(g(x)U_s(x))'$ and $\beta(x) = g(x)^2 U'_s(x)$. Explain why both α and β must be constant.

- (ii) Find α , β and g(x) when $U_s(x) = x^m$ and g(1) = 1, and hence write down the Falkner-Skan equation for $f(\eta)$. What are the boundary conditions for $f(\eta)$? How might a slip velocity $U_s(x) \propto x^m$ arise in practice?
- Q4 High-Reynolds number Jeffery-Hamel flow. In the absence of body forces and in plane polar coordinates (r, θ) the steady Navier-Stokes equations for an incompressible Newtonian fluid with uniform density ρ and kinematic viscosity ν are given by

where $\mathbf{u} = u_r(r,\theta)\mathbf{e}_r + u_\theta(r,\theta)\mathbf{e}_\theta$ is the velocity, p is the pressure and \mathbf{e}_r , \mathbf{e}_θ are unit vectors in the r- and θ -directions. Radial flow is generated in a wedge $-\alpha < \theta < \alpha$ by a source (Q > 0) or sink (Q < 0) of strength Q at the origin. (a) Show that $u_r = |Q|g(\theta)/r$, where the dimensionless function $g(\theta)$ satisfies

$$g^{\prime\prime\prime} + 4g^{\prime} + 2Re\,gg^{\prime} = 0,$$

with $g(-\alpha) = g(\alpha) = 0$ and

$$\int_{-\alpha}^{\alpha} g(\theta) \,\mathrm{d}\theta = \mathrm{sgn}(Q),$$

where the Reynolds number $Re = |Q|/\nu$.

- (b) Suppose the Reynolds number is large (*i.e.* $Re \gg 1$) and that the effects of viscosity are confined to boundary layers on the walls.
 - (i) In the outer region away from the walls, show that $g \sim \operatorname{sgn}(Q)/2\alpha$ as $Re \to \infty$.
 - (ii) In the boundary layer on the wall at $\theta = -\alpha$ in which $\phi = Re^{1/2}(\alpha + \theta) = O(1)$, show that $g \sim G$, where $G(\phi)$ satisfies

$$\frac{\mathrm{d}^2 G}{\mathrm{d}\phi^2} + G^2 = \frac{1}{4\alpha^2},$$

with G(0) = 0 and $G(\infty) = \operatorname{sgn}(Q)/2\alpha$.

(iii) Deduce that such a solution is only possible for in-flow (*i.e.* Q < 0).