B5.3 Viscous Flow: Sheet 3

Q1 Thermal boundary layer on a semi-infinite flat plate. Consider the two-dimensional steady heat convection-
conduction problem in which inwviscid fluid with constant velocity Ui and temperature T, flows past a ‘hot’ semi-
infinite plate at y = 0, « > 0, which is held at constant temperature T},. Assume that the density p, specific heat c,
and thermal conductivity k are constant.

(a) Starting from the conservation of energy equation in sheet 1, Q6(b) show that the temperature T'(x,y) satisfies
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where k = k/pc, is the constant thermal diffusivity. By using the dimensionless variables
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where L is an arbitrary length scale, rewrite the problem in dimensionless form (dropping the stars * on the

dimensionless variables):
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withT=1ony=0,z>0and T — 0 as 22 + y? — oco. Explain the physical significance of the Péclet number
Pe = LU/k in terms of the timescales for conduction and convection of heat.

(b) Given that it is possible to find a similarity solution in the form T'(z,y) = f(n), where = + iy = (£ + in)?/Pe
and f(n) satisfies
forn >0, f"+2nf" =0; f(0)=1, f(o0) =0,

show that T'(z,y) = erfc(n). Deduce that the isotherms are parabolic and indicate on a diagram the regions of
the (x,y)-plane where T'= O(1) as Pe — oc.

(c) Deduce from the governing equations that for Pe > 1 there is a boundary layer on the plate in which
Y = Pe/?y = O(1) and T ~ Ty(x,Y), where
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with Ty(z,0) = 1, To(z, 00) = 0 for 2 > 0. Hence show that Tp = erfc (Y/(4z)1/?).

(d) Finally, show that the exact and asymptotic solution are in agreement in the boundary layer, i.e. show that
T(x,Pe '/2Y) ~ Ty(z,Y) as Pe — oo, with Y = O(1).

Q2 High-Reynolds number flow past a semi-infinite flat plate. Consider the two-dimensional steady viscous flow
of a uniform stream with velocity Ui past a semi-infinite plate at y = 0, x > 0.

(a) Starting from the vorticity-streamfunction formulation in sheet 1, Q5(c)(ii) show that the dimensionless problem
for the streamfunction ¢ (x,y) is given by
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with (upon taking ¢ to be equal to zero on the plate)
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where the dimensionless variables x, y, ¥ and the Reynolds number Re should be defined.

(b) When Re = oo, show that ¢ = y satisfies (??) and (??) except for the no-slip condition. When Re is large but
finite, show that there is a boundary layer on the plate in which Y = Re'/?2y = O(1) and ¢ ~ Re~'/2¥, where
U(z,Y) satisfies the boundary layer equation
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together with the boundary and matching conditions
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(¢) Deduce that
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and hence show that there is a similarity solution of the form ¥(z,Y) = 2% f(n), Y = %1 provided a = 8 = 1/2
and f(n) satisfies Blasius’ equation
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with f(0) = f/(0) =0 and f'(c0) = 1.

Q3 Viscous boundary layer with a non-uniform slip velocity. An incompressible Newtonian fluid flows past a
solid boundary which lies on the positive xz-axis. The flow is two-dimensional and governed by the dimensionless
steady incompressible Navier-Stokes equations

1
(u-V)u= —Vp+EV2u, V-u=0, (5)

where u = u(z,y)i + v(x,y)j is the velocity, p(z,y) is the pressure and Re is the Reynolds number. Suppose that
when Re = oo, the external inviscid irrotational flow generates a non-uniform slip velocity U, (z) on the plate.

(a) Show that, when Re is large but finite, the flow near the plate only differs appreciably from U, (z) in a boundary
layer in which Y = Re/?y = O(1), v ~ Re~*/?V(2,Y) and Prandtl’s boundary layer equations
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pertain. Explain briefly why the boundary and far-field matching conditions are given by
u=V=0on Y=02>0, u—Us(z) as Y — o0,
and deduce that the pressure gradient Op/dx = —U,(z)UL(x).

(b) Show that there is a streamfunction ¥(z,Y") satisfying
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and write down the boundary conditions for W.

(¢) Suppose there is a similarity solution of the form

V(z,Y) =Us(z)g(x) f(n), Y = g(z)n.

(i) Show that the boundary layer equation (??) becomes
£ () + a@)f () " (n) + B(x)(1 — f'(n)*) =0,

where a(z) = g(x) (g(x)US(x))/ and ﬁ( ) = g(z)?UL(z). Explain why both o and 8 must be constant.
(ii) Find «, 8 and g(z) when Ug(x) = 2™ and ¢(1) = 1, and hence write down the Falkner-Skan equation for
f(n). What are the boundary condltlons for f(n)? HOW might a slip velocity Ug(x) o< ™ arise in practice?

Q4 High-Reynolds number Jeffery-Hamel flow. In the absence of body forces and in plane polar coordinates (r, 6)

the steady Navier-Stokes equations for an incompressible Newtonian fluid with uniform density p and kinematic
viscosity v are given by

Our  upOur _wg _ _10p (10 ( Ou\ 10 w2 0u
Yoy r 00 ro por ror \'or r2 002 r2  r2.00 )’
% %% Uptlg —i@—ku 10 8ue 16‘21@_%_‘_33%«

“or T a0 T s T T proe ror\or ) T2 02 T 2T 209 )

1(9 18u9 -

rar e = 0

where u = u,.(r, 0)e, +ug(r, 0)ey is the velocity, p is the pressure and e, ey are unit vectors in the - and #-directions.
Radial flow is generated in a wedge —a < 6 < « by a source (Q > 0) or sink (Q < 0) of strength @ at the origin.



(a) Show that u,. = |Q|g(6)/r, where the dimensionless function g(6) satisfies
9" +4¢ +2Regg =0,

with g(—a) = g(a) = 0 and
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where the Reynolds number Re = |Q|/v.
(b) Suppose the Reynolds number is large (i.e. Re > 1) and that the effects of viscosity are confined to boundary
layers on the walls.
(i) In the outer region away from the walls, show that g ~ sgn(Q)/2« as Re — cc.
(ii) In the boundary layer on the wall at § = —a in which ¢ = Re'/?(a + ) = O(1), show that g ~ G, where
G(¢) satisfies
’G 1
oG =
de? * 402’
with G(0) = 0 and G(o0) = sgn(Q)/2a.
(iii) Deduce that such a solution is only possible for in-flow (i.e. @ < 0).



