Tuesday, 19 May 2020 16:25

Viscous flow, Wed Zo May Warm

Can everyone see this? $2017 \ 01b$, end $W = \chi \left(\frac{\chi^2}{e^2} + \frac{y^2}{b^2}\right) + \beta$ We need to find χ and χ so that $\chi = -U$ on $\chi = \frac{\chi^2}{e^2} + \frac{y^2}{b^2} = 1$,

and $\chi = -\frac{1}{\mu}C$.

These cover:
2017 Q1
2016 Q1
2018 QZ

2017, Q(iv) $w = A(\frac{x^2}{e^2} + \frac{y^2}{b^2}) + B$ Tuesday, 19 May 2020 Flux Q = II w dzdy $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$, put $\begin{cases} x = a r \cos \theta \\ y = b r \sin \theta \end{cases}$ Q = \(\langle \text{2tt} \langle \text{dr rab } \text{W} = Jorda Jah rab (x(r20520) +r25420) = Solds Sold rab (arth) + B) = 2 Trab [4xr4+ = Br2] = 2 Trah (x + 1) The flux Q=0 when d=-ZB Pætting ch $\alpha = \frac{Ga^2b^2}{2\mu(a^2+b^2)}$ B= - 0 - zula² (b²) from (iii) gives $U = -\frac{Ga^2b^2}{4\mu(a^2+b^2)}$

2016 Q1 (iii) Solve $\frac{\partial u}{\partial t} = \cos t + \frac{\partial^2 u}{\partial y^2}$ with u=0 on y=0, u=sint as

Put u=sint+w/(y/t)Put u = sont + W(y,t) $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial y^2}$ with $w = -\frac{\partial w}{\partial y^2}$ on $y = \frac{\partial^2 w}{\partial y^2}$ on y=o Try W(y,t) $= f(y)e^{it}$ as $y \to \infty$ and take seel parts $\frac{\partial v}{\partial t} = if(9)e^{-t}$ implicately. 22w = f"(y) eit we want w = ieit = -sunt , on y=0 $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial y^2}$ and f(0) = i>if = f" f 70 æs y > co Try $f(9) = e^{\chi y} i\pi/2$ $i = \chi^2 = e$ $\chi = \pm e$ For decay, $f \Rightarrow 0$ as $y \Rightarrow 0$, we need $Re \times 20$, so $\chi = -e$ itt/4 $f(y) = f(0) e^{-\frac{1+i}{32i}y} = -\frac{1+i}{32i}$ 二百户一样 $w(y,t) = f(y)e^{it}$ $= ie^{-y/\sqrt{2}} ie^{i(t-y/\sqrt{2})}$ $= e^{-y/\sqrt{2}} ie^{i(t-y/\sqrt{2})}$ The real parts
Wreal = e - 5/52 sch (Jz - t) $u = sint + e^{-9/\sqrt{2}} sch\left(\frac{y}{\sqrt{z^2}} - t\right)$ Thus does vanish on y=0, and u > scirt as y > +0.

2018 QZ(c) F"+4F+ = + C=0 Wednesday, 20 May 2020 10:40 with F=0 on 0=±x $F(0) = F(0) p(1) \qquad 0 = x1$ $F'' = F(0) p''(1) (\frac{d1}{d0})^2 = \frac{F(0)}{d^2} p''$ $= \frac{F(0)}{\alpha^2} p + 4F(0) p + \frac{F(0)^2}{6} p + C = 0$ min BC Ø=0 on 4=±1 Structurally, this is p'' = g(p)Multiply & by & and J'dy F(0) 6" + 4F(0) 49 + F(0) 20 pf $\frac{F(0)}{2d^{2}} \int_{0}^{12} dt + \frac{4}{2} F(0) \int_{0}^{2} dt + \frac{F(0)^{2}}{3v} \int_{0}^{3} dt + c \int_{0}^{3} dt$ The symmetre solution about f=0 has f'(0)=0, and ne know $\phi(0) = 1$ $= 2F(0) + \frac{F(0)^2}{30} + C = A$ F(0) \$12 + 2F(0)\$2+ F(0)2 \$30 + C\$ 2F(0) + F(0)2 + C $\frac{F(0)}{Z\alpha^{2}}\phi^{12} = ZF(0)(1-\phi^{2}) + \frac{F(0)^{2}}{30}(1-\phi^{3})$ $2\sqrt{2} \ell^{2} = 2(1-\ell^{2}) + \frac{E(0)}{30}(1-\ell^{3})$ + = (1-P) $= (1-4)\left(\frac{c}{F(0)} + 2(1+4) + \frac{F(0)}{30}(1+44)\right)$ Z = (dt) = (P) JEX 24 = ± JG(4) sexedy = ±) To (4) $\sqrt{2} \propto 1 = \frac{1}{7} \int_{\beta}^{1} \frac{ds}{(G-(s))}$ \mp as ϕ 3 in the lower limit $\phi(\pm 1) = 0$ and $\phi(0) = 1$, so $\frac{d\phi}{d\eta} < 0$:.) ZXY = +) & ds JG(s) 1 $= \int_{\phi}^{1} \frac{ds}{\int (1-s)(\frac{c}{F(c)} + 2(1+s) + \frac{F(c)}{30}(1+s+s^{2}))}$ The given arsner has R(1-5)52 + lover porrers of s. Arming for $\frac{ds}{ds} = \int_{\beta}^{1} \frac{ds}{\sqrt{3}R(1-s)(K+(1+\frac{6}{R})s+s^{2})}$ $\Rightarrow R = \frac{F(c)}{v} \text{ and } K = 1 + 6 \frac{v}{F(c)} + \frac{3vc}{F(c)}$ $60 \quad K \quad (or c) \quad makes \quad \phi = 0$ when y=1 You can also see Ian Hewitt's video version of this calculation. It's eascer in handsight to samplety ble expression for (24)2 to both like (LØ)² = = = x² R(1-f)(K+(1+Ep)+f) before separating variables.