Tuesday, 19 May 2020 16:25 VECOUS flow, Wed ZOMay 10am car everyone see this? 2017 Q b, end $x | b, e n x$
 $w = x (\frac{x^2}{x^2} + \frac{y^2}{b^2}) + \beta$ We need to find x and $\frac{1}{2}$, so that
 $w = -U$ on $\frac{z^2}{a^2} + \frac{y^2}{b^2} = 1$, and $\nabla^{2}w = -\frac{1}{\mu}G.$

These cover:

\n
$$
2017 \text{ Q1}
$$
\n
$$
2016 \text{ Q1}
$$
\n
$$
2018 \text{ Q2}
$$

Tuesday, 19 May 2020 16:31
2017, Q | (iV) $w = \alpha \left(\frac{x^2}{\alpha^2} + \frac{y^2}{\alpha^2}\right) + \beta$ Flux $Q = \iint w \ dxdy$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$, put $\begin{cases} x = x \cos \theta \\ y = b \cos \theta \end{cases}$ $Q = \int_{a}^{2\pi} d\theta \int_{\infty}^{l} dr$ rab W $=\int_{0}^{2\pi}d\theta\int_{c}^{1}dr$ rab $(\propto(r^{2}cos^{2}\theta)$ = $\int_{0}^{2\pi} d\theta \int_{c}^{1} dr$ rab $(ar^{2}+ \beta)^{+\beta}$ $=2\pi ab \left[\frac{1}{4}\alpha r^{4}+\frac{1}{2}\beta r^{2}\right]_{0}^{1}$ $=2\pi a b \left(\frac{\alpha}{4}+\frac{\beta}{2}\right)$ The flux $Q=0$ when $\alpha=-215$ hetting in $x = \frac{Ge^{2}b^{2}}{2\mu (a^{2}+b^{2})}$ $\beta = -U - \frac{1}{2\mu(a^2+b^2)}$ from (iii) gives
 $S = -0 - \frac{1}{2\mu}$
 $= -\frac{1}{2\mu}$

 2016 Q1 (iii) Solve $\frac{3u}{dt} = \cos t + \frac{2^{2}u}{3}$ with $u = 0$ on $y = 0$, $u \rightarrow$ surt as
Put $u = \text{sat} + w(y,t)$ $y \neq \infty$ Put $u = sat + W(y,t)$ so $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial y^2}$ with $w = -\frac{2}{\partial x}$ on y=0 Try $W(y,t)$
= $f(y) e^{it}$ as $y \neq \infty$
= $f(y) e^{it}$ and $x = y$ and take real ports
 $\frac{\partial w}{\partial t} = i f(s) e^{it}$ inplicitly. $\frac{\partial E}{\partial y^2} = f''(y) e^{it}$ $\frac{2}{3}$ and $\frac{1}{3}$ we hat $w = ie^{it} = -sint + \frac{1}{2}cos t$ on $y = 0$ $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial y^2}$ and $f(0) = 0$ \Rightarrow if $=$ f" $f \rightarrow 0$ as $y \rightarrow \infty$ $(\tau_{\mu} - \frac{f(y)}{f(z)}) = e^{\lambda y} \frac{f(z)}{f(z)} = e^{\frac{\lambda y}{\lambda}} = \pm e^{\frac{\lambda y}{\lambda}}$ For decay, 670 as $y \ge 10$, $w = 10$, $w = 10$ $f(y) = f(0) e^{-\frac{1+i}{\sqrt{2}}y} = -\frac{1+i}{\sqrt{2}}$
 $f(y) = f(0) e^{-\frac{1+i}{\sqrt{2}}y}$ $U = \frac{1}{2}e^{-\frac{1}{2}te^{-t}}$ $w(y,t) = f(y) e^{i t}$
= $\overline{c} e^{i t} - \frac{1+i}{\sqrt{2}} y$
= $e^{-y} \sqrt{2} \overline{c} e^{i (t-\frac{y}{\sqrt{2}})}$ The real part ζ
Wreal = $e^{-\frac{3}{2}\sqrt{z}}$ sur $(\frac{y}{\sqrt{z}}-t)$ Firally, nally,
 $u = \sin t + e^{-\frac{y}{2}}$ sur $\left(\frac{y}{\sqrt{2}} - t\right)$

Wednesday, 20 May 2020 10:40
20 8 Q 2 (c) $F'' + 4F + \frac{F^2}{2} + C = 0$ with $F=0$ on $\theta=\pm\alpha$ $F(0) = F(0) \phi(1)$ $\theta = \alpha y$ $F'' = F(c) \phi''(\psi) \left(\frac{d\psi}{d\theta}\right)^2 = \frac{F(c)}{d^2} \phi''$ $\notimes \frac{F(0)}{\alpha^2}$ $\not=$ $\frac{1}{4}$ $\left(1 + 4F(0)\psi + \frac{F(0)^2}{v}\psi + C = 0\right)$ wer BC $\phi = 0$ on $y = \pm 1$ Structurally, this is $\phi'' = g(\phi)$ Multiply \circledast by ϕ' and $\int d\psi$ $rac{F(0)}{x^{2}}$ $\phi'' \phi'$ \in 4 $F(0)$ $\phi \phi' + \frac{F(0)^{2}}{v}$ $\phi \phi'$ $+c=0$ $\frac{F(0)}{2\alpha^{2}}\phi'^{2}+\frac{4}{2}F(0)\phi^{2}+\frac{F(0)^{2}}{5\upsilon}\phi^{3}+C\phi^{4}$ $A = A$ The symmetre solution The symmetric soutient $\phi'(0) = 0$ and we hnow $\hat{\varphi}(0) = 1$ $2F(0) + \frac{F(0)^2}{30} + C = A$ $rac{F^{(0)}}{2\alpha^{2}}\phi'^{2}+2F^{(0)}\phi^{2}+\frac{F^{(0)}^{2}}{3\nu}\phi^{3}+C\phi^{2}$ $ZF(c) + \frac{F(c)^{2}}{3c} + C$ $rac{F(0)}{2\alpha^{2}}\phi'^{2} = 2F(0)(1-\phi^{2}) + \frac{F(0)^{2}}{3D}(1-\phi^{3})$ $+C(1-\phi)$ $2\frac{1}{x^{2}}\psi'^{2} = 2(1-\psi^{2}) + \frac{F(0)}{3v}(1-\psi^{2})$ $+\frac{c}{F(c)}(1-e)$ $= (1-f)(\frac{c}{F(0)} + 2(1+f) + \frac{F(0)}{32}(1+f))$ $=$ $G(\phi)$ $\frac{1}{2}d^{2}(\frac{df}{dt})^{2}=(0)$ $\frac{1}{\sqrt{2\alpha}}\frac{d\alpha}{d\gamma} = \pm \sqrt{G(\ell)}$ $\int \mathbb{Z} \alpha \int d\psi = \pm \int \frac{\partial \psi}{\partial \psi}$ $JZ \propto \gamma = \mp \int_{\phi}^{1} \frac{ds}{\sqrt{G(s)}}$ \overline{f} as $\overline{\psi}$ is on the lower limit
 $\overline{\psi}(\pm I) = 0$ and $\overline{\psi}(0) = 1$, so $\frac{df}{d\psi} < 0$
 $y = f \frac{ds}{d\psi}$ in $1 > 0$ $=520y = 6 \int_{\phi}^{1} \frac{ds}{\sqrt{G(s)}}$ = $\int_{\phi}^{1} \frac{ds}{\sqrt{(1-s)(\frac{C}{F(c)}+2(1+s)+\frac{F(c)}{g(0)}(1+s+s))}}$ The guen around the pat of K
The guen around her $R(1-s)s^2$ + lover powers of s. Adming for mmg for
 $\alpha y = \int_{\beta}^{1} \frac{ds}{\sqrt{\frac{z}{3}R(1-s)(K+(1+\frac{6}{R})s+s^{2})}}$ $\Rightarrow R = \frac{F(0)}{2}$ and $K = |+6\frac{v}{F(0)} + \frac{zvc}{F(0)}$
 $\Rightarrow R = \frac{F(0)}{2}$ and $K = |+6\frac{v}{F(0)} + \frac{zvc}{F(0)}$ when $y=1$ You can also see Iar Hewitt's
video version of this calculation. video version of this calculation.
It's easier in hondsight to schiptify
the expression for $\left(\frac{d\ell}{dy}\right)^2$ to look $\left(\frac{l\phi}{l\eta}\right)^{2}=\frac{2}{3}\alpha^{2}K(l\phi)(K+(l+\frac{C}{R}\phi)+\phi)$
kefae separating varables.