Wednesday, 20 May 2020 2016 Q3 (b) no flux $r=1$ $U = 0$ on no slip on a $r=1,$ $V=1$ on moving bounday on the solid object on the free $\frac{D}{Dt}(r-h(\theta/t))=0$
 $\Rightarrow u = \frac{\partial h}{\partial t} + v \frac{\partial h}{\partial \theta}$ surface at $r-h(\theta,\epsilon)=0$. Dynamie conditions on the free scribece: $\underline{\sigma} \cdot \underline{n} = 0$ as there's a vacuum outside, so $\underline{C} = 0$ outside, and $\underline{\underline{\sigma}}\cdot \underline{n}$ à continuous at the sier surface. $\underline{\gamma}\cdot\underline{\sigma}\cdot\underline{\nu}=\underline{\omega}\Rightarrow\underline{\varphi}=\underline{\rho}$ $\pm \cdot \underline{\underline{\underline{\sigma}}}\cdot \underline{\underline{n}} = 0 \implies \frac{\partial v}{\partial r} = 0$ In (r, O) coordinates $\underline{V} = \begin{pmatrix} -p + 2\mu & \frac{\partial u}{\partial r} & \mu & (\frac{\partial v}{\partial r} + \frac{\partial u}{\partial \theta}) \\ \mu & (\frac{\partial v}{\partial r} + \frac{\partial u}{\partial \theta}) & -p + 2\mu \frac{\partial v}{\partial \theta} \end{pmatrix}$ on the their fiten approximation

Wednesday, 27 May 2020 18:20 2016 QZ (a) Put $v=S_zV(x,Y)$, $y=S_1Y$ $0 = \nabla \cdot \underline{\nu} = \frac{\partial \underline{\nu}}{\partial x} + \frac{\partial \underline{\nu}}{\partial y}$ $=\frac{2u}{2z}+\frac{5z}{51}\frac{\partial V}{\partial Y}$ $\frac{20}{40}$ choose $S_1 = S_2$.
 $\mu \frac{\partial u}{\partial x} + \sqrt{\frac{\partial u}{\partial y}} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{S_1^2} \frac{\partial^2 u}{\partial y^2} \right)$ Choose $S_1 = Re^{-1/2}$ to get $U \frac{\partial u}{\partial x} + V \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial^2 u}{\partial y^2} + \frac{1}{ke} \frac{\partial^2 u}{\partial x^2}$ $Expanding u = u_0 + Re^{-1/2}U_1 + \cdots$ gues gues
 $u_0 \frac{\partial u_0}{\partial x} + V_0 \frac{\partial u_0}{\partial y} = -\frac{\partial p_0}{\partial x} + \frac{\partial^2 u_0}{\partial y^2}$ at ceaching order.

Wednesday, 27 May 2020 18:39 2016 Q1(b) we' ue bld $u = u(x,y,z,t)$ $\rho\left(\frac{\partial u}{\partial t}+\underline{u}\cdot\nabla\underline{u}\right)=-\nabla p+\nu\rho\nabla^{2}\underline{u}$ $\text{Vol} = 0$ $\nabla p = -\rho G cos(\omega t) \frac{\partial}{\partial s} s$ $\frac{\partial u}{\partial t} + \mu \cdot \nabla u = - G cos(\omega t) \frac{\partial u}{\partial x}$ $+2D\nabla^2\underline{u}$ $0 = \sqrt{\frac{2}{\mu}} = \frac{2\mu}{2\pi}$ so $u = u(y,z,t)$ $\stackrel{..}{=}$ $\Rightarrow u. \nabla u = 0$ $Gcos(\omega t) = +0$ $rac{\partial u}{\partial t} =$ in the half-space y>O. The domain is independent
of Z, so we can take u to be
independent of Z, and find a solution for u(y,t). This is consistent meth P.M=0
30 ne don't need an additional

Wednesday, 21 May 2020, momthg Session! $G(1, 20th$ Way $20 - \frac{9}{5}$ married $3 - \frac{9}{5}$
u(y, t) = sin t + e $\frac{9}{5}$ sun ($\frac{9}{5}$ - t) The sbess on the plate 3 $\frac{2u}{2y}\Big|_{y=0}$
dimensionless
 $\frac{3u}{2y} = e^{-\frac{u}{\sqrt{2}}}\left(-\frac{1}{2}u\left(\frac{y}{\sqrt{2}}-t\right)\right)$ $\frac{\partial u}{\partial y}\Big|_{y=0} = (sint + cos t) \frac{1}{\sqrt{27}}$
 $= 2 ln (t + \pi/4)$ $= \sqrt{2} (30t) \cos \frac{\pi}{4}$ $+ \cos t \sin \frac{\pi}{4}$ $\frac{25}{\sqrt{2}}$ sun $\frac{7}{4} = \frac{1}{\sqrt{2}}$ $u \sim sin t$ as $y \rightarrow \infty$ $\frac{2u}{2} \Big|_{y=0}$ is $\pi/4$ out of phee

 $\frac{Um}{y\rightarrow\infty}u(y,t)$. nith $\frac{\partial u}{\partial t}$ = $G cos(u t) + v \frac{\partial^2 u}{\partial y^2}$ $bi)$ \leftarrow 4 -> The plate at
 $y=0$ is stationary, $y=0$
so $u=0$ on $y=0$. TITI II For from the plate (y >>1) ne
expect u to be independent of y, Learning $\frac{\partial u}{\partial t} = G cos(ut)$
u ~ $\frac{G}{\omega}$ sur (wt). \Rightarrow

Wednesday, 27 May 2020 18:27 Notes, page 20 $E(n) = -p\underline{n} + \mu (Z(\underline{n} \cdot \nabla) \underline{u})$ $+M\Lambda(\text{P14})$

 $\underline{t}(\mathfrak{n})=\underline{\sigma}\cdot \underline{\mathfrak{n}}$ and $\underline{\underline{\sigma}} = -p\underline{\underline{\tau}} + \mu ((\nabla \underline{\mu}) + (\nabla \underline{\mu})^T)$ \vec{c} \vec{c} = -p \vec{b} is +M ($\frac{\partial u}{\partial x_j}$ + $\frac{\partial u_j}{\partial x_k}$) $\begin{array}{l} \mathbb{E}\mathbb{E}(\Delta) \mathbb{J}_{i} = \mathbb{C} \mathbb{E}[\Delta] \\ = \left(-p \mathbb{S} \mathbb{E} \mathbb{E} \mathbb{E}[\Delta] \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{\epsilon}} \right) \right) \mathbb{M}_{i}. \end{array}$ $=-p\Lambda i +\mu(\frac{\partial u}{\partial x_j}+\frac{\partial u_j}{\partial x_i})\Lambda_j$ $\begin{array}{l}\n\boxed{2}(\underline{n}.\underline{v})\underline{u}+\underline{n}\lambda(\forall\lambda\underline{u})\vec{}\\ \n=2n\vec{v}\frac{\partial\vec{u}}{\partial x\vec{j}}+Eipqn_{p}\xi qrs\frac{\partial\vec{u}_{s}}{\partial x_{r}}\n\end{array}$ $= Zn_j \frac{\partial u_i}{\partial x_j} + \epsilon i p q \epsilon r s q n_p \frac{\partial u_s}{\partial x_r}$ $=2N_{j}\frac{\partial u_{i}}{\partial x_{j}}+(5irSps-5isSpr)$ $=2n_j\frac{\partial u_i}{\partial x_j}+n_p\frac{\partial u_p}{\partial x_i}-n_p\frac{\partial u_r}{\partial x_p}$ = $2n_5 \frac{\partial u_i}{\partial x_5} + n_5 \frac{\partial u_i}{\partial x_5} - n_5 \frac{\partial u_i}{\partial x_5}$
= $n_5 \left(\frac{\partial u_i}{\partial x_5} + \frac{\partial u_i}{\partial x_5}\right)$ same as above

Example 2-6.4 in the notes (p.43) Prandtl's idea 3 $\sqrt{7}$ that the flow $\frac{1}{\sqrt{2}}$ comprises an $anscd$ \rightarrow outer flow and a thin vizcous bourday Lager. For inviscial flow around a cylinder:
The incoming uniform stream has no
vortizity, and inviscial flows can't $u = \nabla f$. We need $\overline{V}^2 = \nabla^2 \phi = 0$, and $u_r = \frac{2d}{dr} = o$ on $r = 1$ (cylinder) $Ux = Urcos\theta - U\theta sin\theta$ \rightarrow as $r\rightarrow v$ $let's$ by $\phi = f(r)cos\theta$. $U_r = \frac{2d}{\pi} = f'(r) cos \theta$ $U_{\theta} = \frac{2r}{r} \frac{\partial f}{\partial \theta} = \frac{f(r)}{r} \sin \theta$ The solutions of Laplace's oquation $rcos\theta$ or $\frac{1}{r}cos\theta$. Imposing $\frac{\partial f}{\partial r} = 0$ on $r=1$ and ϕ \sim $\cos\theta = x$ as $\cap \partial P$ determines $\phi = (r + \frac{1}{r}) \cos \theta$. Now he haar the outer flow. now we muse les but ne need
to put it into boundary Corper coordinates.
Originally me had \int_{1}^{1} We can usep this aound a cured sorface provided the than the boundary layer thickness. $s\sqrt{3}$ I is measued torgentially (arc length) Le ce measurer component)
along the boundary from the front, along the boundary from the front,
the forward stagnation point.
Y is measured normally from the
boundary. In the BL, $u(x,y) \Rightarrow U_{5}(x)$ as $\gamma \gg \omega$, where $U_{5}(x) = \lim_{y\to0} U_{0}$ and (x, y) . In other words,
 $\lim_{\gamma \to \infty} u_{BL}(x,\gamma) = \lim_{y \to 0} u_{outer}(x,y)$ $=U_{5}(x)$. $C = \overline{11} - 8$ $\begin{array}{ccccccc} \mathcal{L} & - & 1 & - & \mathcal{O} & & & \mathcal{O} & & \mathcal{O$ The far field flow Looks Like: glow speeds y here This is the for field relative to tte thin boundary layer, but not relative to the cylinder. R^{y} $T = T - 8$ on $T = 1$ ∞ $x\not\sim$ The tongential velocity in the invitriel outer charteux ous
flow as ne approach the cylinder $LCow$ as the approach $LC = \frac{2d}{2\theta} (r=1, \theta=\pi-\theta)$
 $(T=1, \theta=\pi-\theta)$ $= (1+i)(-sin(π-x))$ $=2$ sch ∞ $=$ \cup_{ς} (x) $x=\pi/2, 0s=2$ $x = \pi$ ズニン $\mathcal{O}_S = \circ$ Bernaulli relates $p_o(x)$ to $Os = o$
un the chrisceal flow: $p_o(x) + \frac{1}{z}U_s(x)$ is constant. DEfferentiating w.v.t. x givs $\frac{dP}{dx} = -U_5 \frac{dU_5}{dS} = -2sch \times (2cos \frac{\pi}{3})$ $= -25th(2x)$ $Po(x) = cos(2x) - 1$ nith the constant chosen to with the constant $x = 0, \pi, t$ le stagnation points. two M Savarable avoirent $\frac{1244}{\pi} \times$ $P_{o}(x)$ Po=-2 flow starts flor
accelerator $\bigvee P_{0}=\emptyset$ $\mathcal{C} = 0$ In the Fathmer-Shar model with a de Fathner-moir nous une increasing
Us (x) is accelerating with increasing Us(x) is accelerate)
I (ig. favourable pressue gradient) a Luis faire decelerating mith moneaschg z for m <0. Solutions to the Fathmer-Shar
100074 Carin 70004 oquetions exist for m>-0.0904 a little way urto m<0.