B4.1 Functional Analysis I MT 2019: Problem Sheet 2

When not specified, the scalar field \mathbb{F} may be assumed to be either \mathbb{R} or \mathbb{C}.

1. Let $(X,\|\cdot\|)$ be a normed space
(i) Let $S, T \in L(X)$ be invertible. Prove that also $S T$ is invertible.
(ii) Let $S \in L(X)$ be algebraically invertible, i.e. so that there exists a map $T: X \rightarrow X$ so that $T S=S T=$ Id which we call the algebraic inverse and denote by S^{-1}. Prove that $S^{-1} \in L(X)$ if and only if
(*) $\quad \exists \delta>0$ so that $\forall x \in X$ we have $\|S(x)\| \geqslant \delta\|x\|$.
Conversely show that (\star) is violated if and only if there exist $x_{n} \in X$ with $\left\|x_{n}\right\|=1$ so that $S x_{n} \rightarrow 0$.
2. Let $X=C([-1,1])$ equipped with the sup-norm and define $f: X \rightarrow \mathbb{R}$ by

$$
f(\phi)=\int_{0}^{1} \phi(t) d t-\int_{-1}^{0} \phi(t) d t
$$

Prove that
(i) $f \in X^{*}=L(X, \mathbb{F})$
(ii) $\|f\|=2$
(iii) There exists no $\phi \in X$ so that $\|\phi\|_{\text {sup }}=1$ and $f(\phi)=2$.
3. Let X be the subspace of ℓ^{2} that is defined by

$$
X:=\left\{x \in \ell^{2}:\left(j x_{j}\right) \in \ell^{1}\right\} \subset \ell^{2}
$$

and define

$$
P\left(x_{1}, x_{2}, \ldots\right)=\left(\sum_{j=1}^{\infty} j x_{j}, 0,0, \ldots\right)
$$

(i) Check that P is a linear map from X to X such that $P^{2}=P$.
(ii) Is X (equipped with the ℓ^{2}-norm) a Banach space?
(iii) Is P bounded?

Carefully justify your answers to (ii) and (iii).
4. Let $X=C[a, b]$ equipped with the sup norm. For x in X define $T x$ by

$$
(T x)(t)=\int_{a}^{t} x(s) \mathrm{d} s \quad(t \in[a, b])
$$

(i) Prove that this defines a bounded linear operator $T \in L(X)$ and that $\|T\|=b-a$.
(ii) Find a function $k:\{(s, t) \mid a \leqslant s \leqslant t \leqslant b\} \rightarrow \mathbb{R}$ so that

$$
\left(T^{2} x\right)(t)=\int_{a}^{t} k(s, t) x(s) \mathrm{d} s
$$

and determine $\left\|T^{2}\right\|$.
(iii) (Optional) Determine $k_{n}:\{(s, t) \mid a \leqslant s \leqslant t \leqslant b\} \rightarrow \mathbb{R}$ so that

$$
\left(T^{n} x\right)(t)=\int_{a}^{t} k_{n}(s, t) x(s) \mathrm{d} s
$$

5. Let $t_{j k} \in \mathbb{R}(j, k=1,2, \ldots)$ and denote by $e^{(k)}, k=1,2, \ldots$ the sequences $e^{(k)}=\left(\delta_{k j}\right)_{j \in \mathbb{N}}$. Show that if $\sup _{k, j}\left|t_{j k}\right|<\infty$ then there exists a bounded linear operator $T: \ell^{1} \rightarrow \ell^{\infty}$ so that

$$
(\star \star) \quad\left(T e^{(k)}\right)_{j}=t_{j k} .
$$

Conversely, show that if there is a bounded linear operator $T: \ell^{1} \rightarrow \ell^{\infty}$ so that $(\star \star)$ holds, then we must have that $\sup _{k, j}\left|t_{j k}\right|<\infty$ and indeed $\sup _{k, j}\left|t_{j k}\right|=$ $\|T\|$.
6. (i) Let $\alpha=\left(\alpha_{j}\right)$ be a fixed bounded sequence. Define M_{α} by

$$
M_{\alpha}:\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \alpha_{3} x_{3}, \ldots\right)
$$

Prove that $M_{\alpha} \in L\left(\ell^{\infty}\right)$. For which values of α is M_{α} injective? Prove that M_{α} has a bounded inverse if and only if $\inf _{j}\left|\alpha_{j}\right|>0$.
(ii) Let X be the space of real polynomials on $[0,1]$ regarded as a subspace of the Banach space $C[0,1]$ of continuous functions equipped with the sup norm. For $k=0,1,2, \ldots$, let m_{k} be the k-th monomial, i.e.

$$
m_{k}(t)=t^{k} \quad(t \in[0,1]) .
$$

Define $T: X \rightarrow X$ by letting

$$
T m_{k}=\frac{1}{k+1} m_{k}
$$

and extend T to X by linearity.
(a) Give an integral expression for $T x$ for a general $x \in X$ and use this expession to prove that T can be extended to a bounded linear operator $\tilde{T} \in L(C[0,1])$ with $\|\tilde{T}\|=1$.
(b) Prove that $T: X \rightarrow X$ is a bijection but that its inverse is not bounded.
(c) Is $\tilde{T}: C[0,1] \rightarrow C[0,1]$ still injective? Is it still surjective?

