
B4.1 Functional Analysis I MT 2018: Problem Sheet 4

Except where indicated otherwise spaces may be assumed to be over C.

1. Let c0 be the space of all sequence which converge to zero, as usual equipped
with the ∞-norm.
(i) Prove that (c0)

∗ = `1.
(ii) Let S = {s(n), n ∈ N} be given as the set of sequences defined by

s(n) = (0, 0, . . . , 0, n,−(n+ 1), 0, . . . ),

where the entry n occurs in the nth coordinate. Use (i) to determine
whether span(S) is dense in c0

(iii) If we regard S as a subset of the space `2 (equipped with its usual norm),
is the span(S) dense in `2.

2. Let Y be a finite-dimensional subspace of a normed space X. Prove that there
exists a continuous linear map T : X → Y so that Ty = y for all y ∈ Y .
Conclude that there exists a closed linear subspace Z such that X = Y ⊕ Z.
Hint: It helps to introduce a basis of Y .

3. In this question assume the scalar field is R.

(i) Consider X = L1[−1, 1] with the usual L1 norm. Define ϕ : L1[−, 1]→ R
by

ϕ(f) =

∫ 1

0

f(t) dt−
∫ 0

−1
f(t) dt.

Show that ϕ ∈ X∗.
Show that C := { f | ϕ(f) = 1 } is a closed convex set containing infinitely
many elements of minimum norm.

(ii) Assume X is a reflexive normed space, that is, every element of X∗∗ is of
the form i(x) for some x ∈ X, where i(x)(f) = f(x) for every f ∈ X∗.
Prove that for each f ∈ X∗ there exists x ∈ X such that

‖x‖ = 1 and f(x) = ‖f‖.
(iii) Deduce that C[−1, 1] is not reflexive.

4. Let X be a normed space and T ∈ L(X). Let T ′ ∈ L(X∗) be the associated
dual operator. In (iii) and (iv) assume that X is a Banach space.

(i) Prove that for any T ∈ L(X)

ker(T ) = (T ′X∗)◦ and TX = ker(T ′)◦

(ii) Prove that if T is invertible then T ′ is invertible and (T ′)−1 = (T−1)′.

(iii) Now assume T ′ is invertible. Prove that, for all x ∈ X,

‖Tx‖ > ‖(T ′)−1‖−1‖x‖.
[Hint: You will need to make use of a consequence of HBT.] Hence prove
that T is invertible.

(iv) Prove that σ(T ) = σ(T ′).
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In the following questions you may use all properties of the spectrum encoun-
tered in the lecture/lecture notes, in particular that the spectrum is non-empty,
closed and contained in the closed disc around 0 with radius infn∈N ‖T n‖1/n

5. A linear operator T : `1 → `1 is defined by

T (x1, x2, x3, . . . ) = (y1, y2, y3, . . . ),

where yk =

(
k + 1

k

)
xk+1 for k > 1.

(i) Show that T is bounded and that ‖T‖ = 2. Obtain an explicit formula
for T 2x and, more generally, for T nx when n is a positive integer and
x = (x1, x2, x3, . . . ) ∈ `1. Calculate ‖T n‖.

(ii) Which complex numbers λ are eigenvalues of T?

(iii) Prove that the spectrum of T is the disc {λ ∈ C | |λ| 6 1 }.
6. Let X be the space C[0, 2] with the sup norm, and let

g(t) =

{
t if 0 6 t 6 1,

1 if 1 < t 6 2.

Define T ∈ L(X) by

(Tf)(t) = g(t)f(t), f ∈ C[0, 2], t ∈ [0, 2].

Find ‖T‖, σp(T ) and σ(T ).

7. Let T : `∞ → `∞ be the right-shift operator given by T (x1, x2, x3, . . .) = (0, x1, x2, x3, . . .).

(i) Prove that σp(T ) = ∅.
(ii) Let |λ| < 1. Prove that (λI − T ) does not map `∞ onto `∞.

(iii) Deduce that σ(T ) = D(0, 1),

Optional:
Part (iii) can alternatively be obtained by recognising T as the dual L′ of the

left-shift operator L on `1, for which the spectrum is discussed in the lecture
notes. Can you also prove (i) and (ii) by making use of properties of dual
operators?

8. Consider the operator T : C[0, 1]→ C[0, 1] given by

(Tx)(t) =

∫ t

0

x(s) ds (t ∈ [0, 1]).

from Problem sheet 2. It is true and you may use that for every n ∈ N we have

T n(x)(t) =
∫ 1

0
kn(s, t)x(s)ds where kn(s, t) = (s−t)n−1

(n−1)! .

(i) Use this to show that σ(T ) = {0}.
[Optional: Give an alternative, more direct proof by considering conver-
gence of the series

∑∞
k=0 λ

−kT k.]

(ii) Let S = (Id + T )−1. Prove that σ(S) = {1}.


