B4.1 Functional Analysis I MT 2018: Problem Sheet 4

Except where indicated otherwise spaces may be assumed to be over \mathbb{C} .

- 1. Let c_0 be the space of all sequence which converge to zero, as usual equipped with the ∞ -norm.
 - (i) Prove that $(c_0)^* = \ell_1$.
 - (ii) Let $S = \{s^{(n)}, n \in \mathbb{N}\}$ be given as the set of sequences defined by

$$s^{(n)} = (0, 0, \dots, 0, n, -(n+1), 0, \dots),$$

where the entry n occurs in the nth coordinate. Use (i) to determine whether $\operatorname{span}(S)$ is dense in c_0

- (iii) If we regard S as a subset of the space ℓ^2 (equipped with its usual norm), is the span(S) dense in ℓ^2 .
- **2.** Let Y be a finite-dimensional subspace of a normed space X. Prove that there exists a continuous linear map $T: X \to Y$ so that Ty = y for all $y \in Y$. Conclude that there exists a closed linear subspace Z such that $X = Y \oplus Z$. Hint: It helps to introduce a basis of Y.
- **3.** In this question assume the scalar field is \mathbb{R} .
 - (i) Consider $X = L^1[-1, 1]$ with the usual L^1 norm. Define $\varphi \colon L^1[-, 1] \to \mathbb{R}$ by

$$\varphi(f) = \int_0^1 f(t) dt - \int_{-1}^0 f(t) dt.$$

Show that $\varphi \in X^*$.

Show that $C := \{ f \mid \varphi(f) = 1 \}$ is a closed convex set containing infinitely many elements of minimum norm.

(ii) Assume X is a reflexive normed space, that is, every element of X^{**} is of the form i(x) for some $x \in X$, where i(x)(f) = f(x) for every $f \in X^*$. Prove that for each $f \in X^*$ there exists $x \in X$ such that

$$||x|| = 1$$
 and $f(x) = ||f||$.

- (iii) Deduce that C[-1,1] is not reflexive.
- **4.** Let X be a normed space and $T \in L(X)$. Let $T' \in L(X^*)$ be the associated dual operator. In (iii) and (iv) assume that X is a Banach space.
 - (i) Prove that for any $T \in L(X)$

$$\ker(T) = (T'X^*)_{\circ} \text{ and } \overline{TX} = \ker(T')_{\circ}$$

- (ii) Prove that if T is invertible then T' is invertible and $(T')^{-1} = (T^{-1})'$.
- (iii) Now assume T' is invertible. Prove that, for all $x \in X$,

$$||Tx|| \ge ||(T')^{-1}||^{-1}||x||.$$

1

[Hint: You will need to make use of a consequence of HBT.] Hence prove that T is invertible.

(iv) Prove that $\sigma(T) = \sigma(T')$.

In the following questions you may use all properties of the spectrum encountered in the lecture/lecture notes, in particular that the spectrum is non-empty, closed and contained in the closed disc around 0 with radius $\inf_{n\in\mathbb{N}} ||T^n||^{1/n}$

5. A linear operator $T : \ell^1 \to \ell^1$ is defined by

$$T(x_1, x_2, x_3, \dots) = (y_1, y_2, y_3, \dots),$$

where $y_k = \left(\frac{k+1}{k}\right) x_{k+1}$ for $k \ge 1$.

- (i) Show that T is bounded and that ||T|| = 2. Obtain an explicit formula for T^2x and, more generally, for T^nx when n is a positive integer and $x = (x_1, x_2, x_3, \dots) \in \ell^1$. Calculate $||T^n||$.
- (ii) Which complex numbers λ are eigenvalues of T?
- (iii) Prove that the spectrum of T is the disc $\{\lambda \in \mathbb{C} \mid |\lambda| \leq 1\}$.
- **6.** Let X be the space C[0,2] with the sup norm, and let

$$g(t) = \begin{cases} t & \text{if } 0 \leqslant t \leqslant 1, \\ 1 & \text{if } 1 < t \leqslant 2. \end{cases}$$

Define $T \in L(X)$ by

$$(Tf)(t) = g(t)f(t), f \in C[0,2], t \in [0,2].$$

Find ||T||, $\sigma_p(T)$ and $\sigma(T)$.

- 7. Let $T: \ell^{\infty} \to \ell^{\infty}$ be the right-shift operator given by $T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$.
 - (i) Prove that $\sigma_{p}(T) = \emptyset$.
 - (ii) Let $|\lambda| < 1$. Prove that $(\lambda I T)$ does not map ℓ^{∞} onto ℓ^{∞} .
 - (iii) Deduce that $\sigma(T) = \overline{D}(0, 1)$,

Optional:

Part (iii) can alternatively be obtained by recognising T as the dual L' of the left-shift operator L on ℓ^1 , for which the spectrum is discussed in the lecture notes. Can you also prove (i) and (ii) by making use of properties of dual operators?

8. Consider the operator $T: C[0,1] \to C[0,1]$ given by

$$(Tx)(t) = \int_0^t x(s) ds \quad (t \in [0, 1]).$$

from Problem sheet 2. It is true and you may use that for every $n \in \mathbb{N}$ we have $T^n(x)(t) = \int_0^1 k_n(s,t)x(s)ds$ where $k_n(s,t) = \frac{(s-t)^{n-1}}{(n-1)!}$.

- (i) Use this to show that $\sigma(T) = \{0\}$. [Optional: Give an alternative, more direct proof by considering convergence of the series $\sum_{k=0}^{\infty} \lambda^{-k} T^k$.]
- (ii) Let $S = (\operatorname{Id} + T)^{-1}$. Prove that $\sigma(S) = \{1\}$.