In the questions below the scalar field is assumed to be $\mathbb R$ for simplicity, but all results hold when the scalars are complex.

1. Let X be the vector space of real sequences (x_i) and define

$$
||(x_j)|| = \begin{cases} 0 & \text{if } x_j = 0 \text{ for all } j, \\ |x_{j_0}| & \text{if } j_0 = \min\{j \mid x_j \neq 0\}. \end{cases}
$$

Show that the Triangle Inequality fails to hold, so that $\|\cdot\|$ is not a norm.

2. (i) Let X be a real inner product space and, for each $x \in X$, let $||x|| = \langle x, x \rangle^{1/2}$. You may assume the fact that $\|\cdot\|$ does define a norm on X. Verify the Parallelogram Law: for all $x, y \in X$,

$$
||x + y||2 + ||x - y||2 = 2||x||2 + 2||y||2.
$$

(ii) Consider the ∞ norm $\|\cdot\|_{\infty}$ on \mathbb{R}^n $(n \geq 2)$:

$$
||(x_1,\ldots,x_n)||_{\infty}=\sup_{1\leq j\leq n}|x_j|.
$$

By showing that the Parallelogram Law fails, prove that there is no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n such that

$$
||x||_{\infty} = \langle x, x \rangle^{1/2}
$$
 for all $x \in \mathbb{R}^n$.

3. Let X be a (real) vector space equipped with a norm $\|\cdot\|$. As usual we define a metric d on X by $d(x, y) = ||x - y||$. For $x_0 \in X$ and $r > 0$, let

$$
B_r(x_0) = \{ x \in X \mid ||x - x_0|| < r \} \qquad \text{(open ball)},
$$
\n
$$
\overline{B}_r(x_0) = \{ x \in X \mid ||x - x_0|| \le r \} \qquad \text{(closed ball)}.
$$

[The terminology was justified in the Metric Spaces course: it was shown that open balls are open sets and closed balls are closed sets.]

- (i) A subset C of X is convex if $x, y \in C$ and $0 \leq \lambda \leq 1$ imply $\lambda x + (1 \lambda)y \in C$. Prove that $B_r(x_0)$ and $B_r(x_0)$ are convex.
- (ii) Prove that $\overline{B}_r(x_0)$ is the closure of $B_r(x_0)$.
- (iii) Use (i) to show that $(x_1, x_2) \mapsto |x_1|^{1/2} + |x_2|^{1/2}$ does not define a norm on \mathbb{R}^2 .
- 4. (i) Let X be a real normed space. Let $T: X \to \mathbb{R}$ be a linear map such that $|Tx| \leq ||x||$ for all $x \in X$. Prove that T is continuous.
	- (ii) Let $X = \ell^p$, $1 \leqslant p \leqslant \infty$, equipped with the *p*-norm $||x||_p = \left(\sum_{j=1}^{\infty} |x_i|^p\right)^{1/p}$ respectively $||x||_{\infty} = \sup_j |x_j|$. Define $\pi_k \colon X \to \mathbb{R}$ by $\pi_k((x_j)) = x_k$ (for any $k \geq 1$). Check that each π_k is continuous.
	- (iii) Let $X = L^2([0,1])$ and define $T : X \to \mathbb{R}$ by $T(f) := \int_0^1 f dx$. Check that T is continuous. [Hint: Use that by Hölder's inequality $||fg||_{L^1} \le ||f||_{L^2} ||g||_{L^2}$ for every $f, g \in L^2([0,1])$.]
	- (iv) Let X be as in (ii). Let (a_i) be a fixed sequence of real numbers and define

$$
Y = \{ (x_j) \in X \mid x_{2j} = a_j x_{2j-1} \text{ for all } j \geq 1 \}.
$$

Check that Y is a subspace of X and, by writing Y as an intersection of closed sets involving maps π_k , or otherwise, show that Y is closed.

5. Let Y be a subspace of a normed space $(X, \|\cdot\|)$. Prove that Y is closed if and only if

$$
dist(x, Y) := \inf_{y \in Y} ||x - y|| > 0 \text{ for all } x \in X \setminus Y.
$$