1 Take $x=(1,3,0,0, \ldots)$ and $y=(-1,0,0, \ldots)$. Then $\|x\|=\|y\|=1$ but $x+y=(0,3,0,0, \ldots)$ and $\|x+y\|=3$ so the Triangle Inequality fails.

2 (i)

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =2\langle x, x\rangle+2\langle y, y\rangle+2\langle x, y\rangle-2\langle y, x\rangle \\
& =2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

(ii) In \mathbb{R}^{n} with ∞-norm let x and y be defined by $x_{j}=\delta_{1 j}$ respectively $y=\delta_{2 j}$) for $j=1, \ldots, n$. Then, $\|x\|_{\infty}=\|y\|_{\infty}=1$ and $\|x+y\|_{\infty}=\|x-y\|_{\infty}=1$. So the Parallelogram Law fails for $\|\cdot\|_{\infty}$ and this norm therefore cannot come from an inner product.

3 (i) Take $\lambda \in[0,1]$ and $y, z \in \mathrm{~B}_{r}\left(x_{0}\right)$. Then

$$
\begin{aligned}
\left\|x_{0}-(\lambda y+(1-\lambda) z)\right\| & =\left\|\lambda x_{0}-\lambda y+(1-\lambda) x_{0}-(1-\lambda) z\right\| \\
& \leqslant\left\|\lambda\left(x_{0}-y\right)\right\|+\left\|(1-\lambda)\left(x_{0}-z\right)\right\| \\
& =\lambda\left\|x_{0}-y\right\|+(1-\lambda)\left\|x_{0}-z\right\| \\
& <r .
\end{aligned}
$$

Likewise $\overline{\mathrm{B}}_{r}\left(x_{0}\right)$ is convex.
(ii) We can use the characterisations of the closure \bar{F} of a set F obtained in metric spaces that $x \in \bar{F}$ if and only if $x \in F$ or x is a limit point, and hence if and only if there exists a sequence $\left(x_{n}\right)$ so that $x_{n} \in F$ and $x_{n} \rightarrow x$ (in case $x \in F$ such a sequence can be chosen as $x_{n}=x$, otherwise its existence follows from the definition of limit point). Given $x \in \overline{\mathrm{~B}}_{r}\left(x_{0}\right)$ we can choose $x_{n}=\left(1-\frac{1}{n}\right)\left(x-x_{0}\right)+x_{0} \in \mathrm{~B}_{r}\left(x_{0}\right)$ to get $x_{n} \rightarrow x$ and hence $\overline{\mathrm{B}}_{r}\left(x_{0}\right) \subset \overline{\mathrm{B}_{r}\left(x_{0}\right)}$, while conversely if $\left(x_{n}\right)$ is a sequence such that each $x_{n} \in \mathrm{~B}_{r}\left(x_{0}\right)$ and $x_{n} \rightarrow x$ then

$$
\left\|x-x_{0}\right\| \leqslant\left\|x-x_{n}\right\|+\left\|x_{n}-x_{0}\right\|<\left\|x-x_{n}\right\|+r .
$$

Letting $n \rightarrow \infty$, we get $\left\|x-x_{0}\right\| \leqslant r$. Hence $\overline{B_{r}(x)} \subseteq \overline{\mathrm{B}}_{r}\left(x_{0}\right)$.
(iii) In \mathbb{R}^{2}, consider $x=(1,0)$ and $y=(0,1)$ so $\frac{1}{2} x+\frac{1}{2} y=\left(\frac{1}{2}, \frac{1}{2}\right)$. The "p-norm" formula with $p=1 / 2$ would give $\|x+y\|=(2 / \sqrt{2})^{2}=2$ so that $x+y$ would not belong to the closed ball centre 0 and radius 1 . But x and y do belong to this ball. This contradicts convexity. [A sketch of the set of points $(s, t) \in \mathbb{R}^{2}$ for which $|s|^{1 / 2}+|t|^{1 / 2} \leqslant 1$ is instructive.]
4. (i) Linearity of T implies $|T x-T y|=|T(x-y)|$. So $|T x-T y| \leqslant\|x-y\|$, i.e. T is Lipschitz continuous and hence of course continuous.
(ii) Fix k. Note that for any of $1 \leqslant p \leqslant \infty$, we have $\left|x_{k}\right| \leqslant\left\|\left(x_{j}\right)\right\|_{p}$. Therefore π_{k} is norm-reducing and so continuous by (i).
(iii) We use that the constant function $g \equiv 1$ is an element of $L^{2}([0,1])$ with $\|g\|_{L^{2}([0,1])}=$ $\left(\int_{0}^{1} 1 d x\right)^{\frac{1}{2}}=1$. By Hölder's inequality we thus get that $|T(f)|=\left|\int_{0}^{1} f\right| \leqslant\|f\|_{L^{1}}=$ $\|f \cdot g\|_{L^{1}} \leqslant\|f\|_{L^{2}} \cdot\|g\|_{L^{2}}=\|f\|_{L^{2}}$ so continuity follows from (i).
(iv) Because vector space operations in X are defined coordinatewise, it follows from the Subspace Test (routine calculations!) that Y is a subspace.
To see that Y is closed, there are different arguments possible:
Variant 1: We know that a set $F \subset X$ is closed if for any sequence $\left(f_{j}\right)$ with $f_{j} \in F$ which converges $x_{j} \rightarrow x \in X$, the limit x is again an element of F. Given a sequence
$\left(x_{j}^{(k)}\right) \subset Y$ which converges to some limit $\left(x_{j}^{(k)}\right) \rightarrow\left(x_{j}\right)$ as $k \rightarrow \infty$ we must have that also the components converge and hence $x_{2 j}=\lim x_{2 j}^{(k)}=\lim a_{j} x_{2 j-1}^{(k)}=a_{j} x_{2 j-1}$ so $\left(x_{j}\right) \in Y$. Variant 2: We recall that for continuous maps the preimage of any closed set is again closed. For each k the map $\rho_{k}: y \mapsto \pi_{2 k}(y)-a_{k} \pi_{2 k-1}(y)$ is continuous, so $\rho_{k}^{-1}(\{0\})$ is closed. Then

$$
Y=\bigcap_{k} \rho_{k}^{-1}(\{0\})
$$

is an intersection of closed sets and hence is closed
5. Suppose that Y is closed and that there exists $x_{0} \in X \backslash Y$ so that $\operatorname{dist}\left(x_{0}, Y\right)=0$. Then there exists a sequence $y_{n} \in Y$ so that $\left\|x-y_{n}\right\| \rightarrow 0$, i.e. so that $y_{n} \rightarrow x$. But since Y is closed this implies that $x \in Y$ leading to a contradiction.

Supose instead that Y is a subspace which is not closed. Then there exists an element $x \in X \backslash Y$ which is a limit point of Y and hence for which $\operatorname{dist}(x, Y)=0$.

