When not specified, the scalar field \mathbb{F} may be assumed to be either \mathbb{R} or \mathbb{C} .

- **1.** Let X be a real or complex vector space and assume that $x \mapsto ||x||_0$ is a *seminorm*, i.e. a function from X to $[0, \infty)$ which satisfies
 - (N2) $\|\lambda x\|_0 = |\lambda| \|x\|_0$ for all $\lambda \in \mathbb{F}$ and all $x \in X$;
 - (N3) $||x + y||_0 \leq ||x||_0 + ||y||_0$ for all $x, y \in X$.

Let $X_0 = \{x \in X \mid ||x||_0 = 0\}$. Show that X_0 is a subspace of X. Let X/X_0 be the associated quotient space (as defined in Part A Linear Algebra). "Define" $||x + X_0|| = ||x||_0$ for $x \in X$.

- (i) Show that $\|\cdot\|$ is a well-defined map from X/X_0 to $[0,\infty)$.
- (ii) Show that $\|\cdot\|$ is a norm on X/X_0 .
- 2. (i) Consider \mathbb{R}^m equipped with the *p*-norms $||x||_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$ respectively with $||x||_{\infty} = \sup_{i=1,\dots,m} |x_i|$. Show that, for any $x = (x_1,\dots,x_m) \in \mathbb{R}^m$ and any $1 \leq p < \infty$,

$$||x||_{\infty} \leqslant ||x||_p \leqslant m^{1/p} ||x||_{\infty}$$

and deduce that $\lim_{p\to\infty} ||x||_p = ||x||_{\infty}$.

(ii) Consider now the sequence space ℓ^p and prove that for any $1 \leq p < q \leq \infty$

$$\ell^p \subsetneq \ell^q.$$

Hint: Use that $t^q \leq t^p$ for all $t \in [0, 1]$

(iii) Consider now the function spaces $L^p([0,1])$. Prove that if $1 \leq p < q \leq \infty$ then

 $L^{p}([0,1]) \supset L^{q}([0,1]).$

Hint: Use Hölder's inequality with exponents $r = \frac{q}{p}$ and s so that $\frac{1}{r} + \frac{1}{s} = 1$ Does this relation also hold true for $L^p(\mathbb{R})$? (Hint: Compare with part (ii))

3. (i) Consider the space $\mathcal{F}^b(\mathbb{R})$ of all bounded real-valued functions on \mathbb{R} with the sup norm, which you may assume is a Banach space. Show that

$$C_0(\mathbb{R}) := \{ f \in C(\mathbb{R}) : |f(t)| \to 0 \text{ as } |t| \to \infty \}$$

is a closed subspace of $\mathcal{F}^b(\mathbb{R})$ and hence deduce that $(C_0(\mathbb{R}), \|\cdot\|_{sup})$ is a Banach space. You may use without proof that the uniform limit of a sequence of continuous functions is continuous

(ii) Prove that

$$(C_c(\mathbb{R}) := \{ f \in C(\mathbb{R}) : \operatorname{supp}(f) \text{ is compact} \}, \| \cdot \|_{sup})$$

is not a Banach space.

Hint: Show that $C_c(\mathbb{R})$ is dense in $C_0(\mathbb{R})$ by constructing for every $f \in C_0(\mathbb{R})$ a sequence $f_n \in C_c(\mathbb{R})$ so that $||f - f_n||_{sup} \to 0$.

 $Z := \{ f \colon [-1,1] \to \mathbb{R} \text{ Lipschitz continuous } \}$

and define for $f \in \mathbb{Z}$

$$\operatorname{Lip}(f) := \inf\{L \in \mathbb{R} : |f(s) - f(t)| \leq L|s - t| \text{ for all } s, t \in [-1, 1]\}.$$

We furthermore consider the subspace $X := \{f \in Z : f(0) = 0\}$ of Z.

- (i) Show $||f||_{\text{Lip}} := \text{Lip}(f)$ defines a norm on X. Does this also define a norm on Z?
- (ii) For $f \in X$, show that $||f||_{\text{Lip}} \ge ||f||_{\infty}$. Are the two norms equivalent? Justify your answer with a proof or counterexample.
- (iii) Show that $(X, \|\cdot\|_{\text{Lip}})$ is a Banach space.

5. Let $X = c_0$ be the space of sequences (α_j) that converge to zero, equipped with the sup norm. Consider the subsets

 $Y = \{ (\alpha_j) : \alpha_{2j-1} = 0, \ j = 1, 2, \dots \} \text{ and } Z = \{ (\alpha_j) \mid \alpha_{2j} = j^2 \alpha_{2j-1}, \ j = 1, 2, \dots \}.$

Show that Y and Z are closed subspaces of X and that the element $x = (1, 0, \frac{1}{4}, 0, \frac{1}{9}, 0, ...)$ lies in the closure of Y + Z but not in Y + Z.