1. Let f be a real-valued continuous function on [0, 1] such that

$$\int_0^1 f(t) e^{nt} dt = 0 \quad \text{for } n = 0, 1, 2, \dots$$

Prove that $f \equiv 0$.

2. Consider the space $c_0 = \{x \in \ell^{\infty}(\mathbb{R}) : \lim_{j \to \infty} x_j = 0\}$. Make use of the Weierstrass polynomial approximation theorem to prove that, given $\varepsilon > 0$, and any $x \in c_0$ there exists a natural number N and scalars $\lambda_1, \ldots, \lambda_N$ such that

$$\left| x_j - \sum_{n=1}^N \lambda_n j^{-n} \right| < \varepsilon \qquad (j = 1, 2, \ldots).$$

- **3.** Throughout this question take care to make it clear which norm you are working with when more than one norm is in play.
 - (i) Let $a \leq c < d \leq b$. Prove that there exists $f_n \in C[a, b]$ such that $f_n \to \chi_{[c,d]}$ in the sense of L^1 , i.e. $||f_n - \chi_{[c,d]}||_{L^1} \to 0$. Using that the set of step functions $L^{\text{step}}[a, b]$ is dense in $(L^1[a, b], || \cdot ||_1)$ deduce that C[a, b] is dense in $(L^1[a, b], || \cdot ||_1)$.
 - (ii) Let $(X, \|\cdot\|_X)$ be a normed space, let $Z \subset Y \subset X$ subspaces and let $\|\cdot\|_Y$ be a norm on Y. Suppose that Z is dense in $(Y, \|\cdot\|_Y)$ and that Y is dense in $(X, \|\cdot\|_X)$. Prove that if there exists some $C \in \mathbb{R}$ so that

$$\star) \qquad \|y\|_X \leqslant C \|y\|_Y \text{ for all } y \in Y$$

then also Z is dense in $(X, \|\cdot\|_X)$.

Conversely, illustrate by an example that this claim does not hold true in general if the assumption (\star) is dropped.

4. (i) Let $(X, \|\cdot\|_{Lip})$ be the space of Lipschitz functions on [-1, 1] with x(0) = 0, as defined in Q. 4 on Problem sheet 1. By considering the family $\{x_u \mid u \in [-1, 1]\}$, where, for $t \in [-1, 1]$,

$$x_u(t) = |u| - |u - t|,$$

or otherwise, prove that X is inseparable.

- (ii) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and suppose that there exists a linear map $T: X \to Y$ which is isometric (though not necessarily surjective). Prove that if X is inseparable then also Y must be inseparable. Does the converse implication, i.e. that Y inseparable implies X inseparable, hold? (Please justify your answer).
- (ii) Let C^b([1,∞)) be the space of bounded complex-valued continuous functions on [1,∞) with the sup norm.
 By constructing a suitable map T from l[∞] into C^b([1,∞)), or otherwise, prove that C^b([1,∞)) is inseparable.

- 5. (i) Let c be the subspace of ℓ^{∞} consisting of all convergent sequences. Prove that c is separable.
 - (ii) Let K be the set

$$K = \{ z \in \mathbb{C} \mid 1 \leq |z| \leq 2 \}.$$

Define $\varphi \colon C(K) \to \mathbb{C}$ by

$$\varphi(f) = \int_{|z|=3/2} f(z) \,\mathrm{d}z.$$

Prove that φ is a continuous linear functional on C(K). Use this to prove that the space of all complex polynomials is not dense in $C(K, \mathbb{C})$. *Hint: consider the function* $f(z) = 1/z \in C(K, \mathbb{C})$.