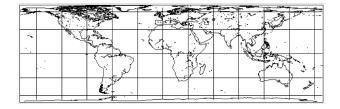
Problem Sheet 3

- 1. Let U be an open subset of \mathbb{R}^2 and let $\mathbf{r}: U \to \mathbb{R}^3$ be a smooth parametrisation of a surface $S = \mathbf{r}(U) \subseteq \mathbb{R}^3$. Let $E du^2 + 2F du dv + G dv^2$ be its first fundamental form. A parametrisation is said to be *conformal* if it preserves angles between intersecting curves, and *equiareal* if it preserves areas.
 - Show that the parametrisation is *conformal* if and only if E = G and F = 0, and is *equiareal* if and only if $EG F^2 = 1$.
 - What is the first fundamental form of the spherical coordinates local parametrisation of the unit sphere, given by $\mathbf{r}(\theta, \phi) = (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi)$? Show that this parametrisation is neither conformal nor equiareal. (In this familiar parametrisation, θ gives the longitude and ϕ the latitude.)
 - Mercator's projection of the unit sphere minus the Date Line takes a point $\mathbf{r}(\theta,\phi)$ with latitude ϕ and longitude θ to $(\theta,\log\tan(\frac{\phi}{2}+\frac{\pi}{4}))$ in $(-\pi,\pi)\times\mathbb{R}$. Show that this parametrisation is conformal but not equiareal.

• Lambert's cylindrical projection takes a point $\mathbf{r}(\theta, \phi)$ with latitude ϕ and longitude θ to $(\theta, \sin \phi)$.



Show that this parametrisation is equiareal.

- 2. The tractrix is a curve in \mathbb{R}^2 such that the distance along any tangent line from its point of contact with the curve to its point of intersection with the x-axis is 1. If θ is the angle the tangent line makes with the x-axis, show that the surface of revolution (the tractoid) obtained by rotating the tractrix about the x-axis has first fundamental form $\cot^2 \theta \, d\theta^2 + \sin^2 \theta \, dv^2$, where v is the angle of rotation of the surface of revolution. By making a suitable change of coordinates between (v, θ) and (x, y), show that the tractoid is locally isometric to the hyperbolic plane with first fundamental form $(dx^2 + dy^2)/y^2$.
- **3.** Show that the Gaussian curvature of a surface which is the graph of a smooth function z = f(x, y) is given by

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2}.$$

Calculate K when f(x, y) = xy and sketch the surface.

- **4.** Let $\mathbf{r}(u,v)$ be a parametrized surface in \mathbb{R}^3 with $(u,v) \in U$, a connected open set in \mathbb{R}^2 . Let S^2 denote the sphere of radius 1 with centre the origin in \mathbb{R}^3 and let $\mathbf{n}: U \to S^2$ be the mapping defined by assigning to each point of the surface the unit normal. Suppose that the restriction of \mathbf{n} to U is a bijection onto $\mathbf{n}(U)$ and that the Gaussian curvature K is nowhere zero in U. Show that the area of $\mathbf{n}(U)$ equals the absolute value of $\int_U K dA$.
- **5.** Let S be the unit sphere in \mathbb{R}^3 and γ the circle obtained by intersecting S with the plane $z = \sqrt{1 a^2}$. Calculate the geodesic curvature of γ and the area of the smaller region of the sphere bounded by γ , and use these results to illustrate the Gauss–Bonnet theorem.