B3.1 Galois Theory Sheet 3 (MT 2018)

In these problems K denotes an arbitrary field and K[x] denotes the ring of polynomials in one variable x over K. If p is a prime number, then \mathbb{F}_p denotes the field of integers modulo p.

- 1. Let $\Phi_m(x) \in \mathbb{C}[x]$ be the *m*-th cyclotomic polynomial, the monic polynomial whose roots are the primitive *m*th roots of 1 in \mathbb{C} . Show that
 - (a) $\Phi_1(x) = x 1; \ \Phi_2(x) = x + 1; \ \Phi_3(x) = x^2 + x + 1; \ \Phi_4(x) = x^2 + 1.$
 - (b) $\prod_{d|m} \Phi_d(x) = x^m 1.$
 - (c) $\Phi_m(x) \in \mathbb{Z}[x]$. [Hint: prove first that $\Phi_m(x) \in \mathbb{Q}[x]$ by induction on m).
 - (d) If p is prime then $\Phi_p(x) = 1 + x + x^2 + \dots + x^{p-1}$ and $\Phi_{p^n}(x) = \Phi_p(x^{p^{n-1}})$.
 - (e) deg Φ_{nm} = deg Φ_m deg Φ_n if (m, n) are relatively prime.
- 2. Let n be a positive integer and $f = x^{p^n} x \in \mathbb{F}_p[x]$. Let M be the splitting field of f over \mathbb{F}_p . Show that M consists exactly of the set of roots of f. Show that $[M : \mathbb{F}_p] = n$. Explain why this fact also shows the existence of an irreducible polynomial of degree n in $\mathbb{F}_p[x]$.
- 3. (a) Prove that $\Phi_{12}(x) = x^4 x^2 + 1$, and that it is irreducible over \mathbb{Q} . Factorise it into irreducibles over \mathbb{F}_p when p = 2, 3, 5, 13.
 - (b) If p is any prime with p > 3 show that $p^2 1$ is divisible by 12, and deduce that Φ_{12} is reducible over \mathbb{F}_p for every prime p.
- 4. For this exercise recall the definition of a group action on a set. Let $f \in K[x]$ be a separable degree *n* polynomial, let *M* be its splitting field and $G = \Gamma(M : K)$ be the Galois group of *M*. Let $A = \{\alpha_1, \ldots, \alpha_n\} \subseteq M$ be the set of roots of *f*. Let S(A) be the set of permutations of the roots of *f*.
 - (a) Show that G acts faithfully on A (this is equivalent to showing that there is an injective group homomorphism between G and S(A)).
 - (b) Show that if f is irreducible, then G acts transitively on A (this is equivalent to show that for any $\alpha_i, \alpha_j \in A$ there exists $\sigma \in G$ such that $\sigma(\alpha_i) = \alpha_j$).
- 5. Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting field:
 - (a) $x^2 + 1$ over \mathbb{R} ;
 - (b) $x^3 1$ over \mathbb{Q} ;
 - (c) $x^3 5$ over \mathbb{Q} ;
 - (d) $x^6 3x^3 + 2$ over \mathbb{Q} ;

- (e) $x^5 1$ over \mathbb{Q} ;
- (f) $x^6 + x^3 + 1$ over \mathbb{Q} .
- (g) $x^{p^n} x t$ over $\mathbb{F}_{p^n}(t)$ (you can assume that this polynomial is irreducible over $\mathbb{F}_{p^n}(t)$)
- 6. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is Galois over \mathbb{Q} , and find its Galois group.