B3.1 Galois Theory Sheet 3 (MT 2018)

In these problems K denotes an arbitrary field and $K[x]$ denotes the ring of polynomials in one variable x over K. If p is a prime number, then \mathbb{F}_{p} denotes the field of integers modulo p.

1. Let $\Phi_{m}(x) \in \mathbb{C}[x]$ be the m-th cyclotomic polynomial, the monic polynomial whose roots are the primitive m th roots of 1 in \mathbb{C}. Show that
(a) $\Phi_{1}(x)=x-1 ; \Phi_{2}(x)=x+1 ; \Phi_{3}(x)=x^{2}+x+1 ; \Phi_{4}(x)=x^{2}+1$.
(b) $\prod_{d \mid m} \Phi_{d}(x)=x^{m}-1$.
(c) $\Phi_{m}(x) \in \mathbb{Z}[x]$. [Hint: prove first that $\Phi_{m}(x) \in \mathbb{Q}[x]$ by induction on m).
(d) If p is prime then $\Phi_{p}(x)=1+x+x^{2}+\cdots+x^{p-1}$ and $\Phi_{p^{n}}(x)=\Phi_{p}\left(x^{p^{n-1}}\right)$.
(e) $\operatorname{deg} \Phi_{n m}=\operatorname{deg} \Phi_{m} \operatorname{deg} \Phi_{n}$ if (m, n) are relatively prime.
2. Let n be a positive integer and $f=x^{p^{n}}-x \in \mathbb{F}_{p}[x]$. Let M be the splitting field of f over \mathbb{F}_{p}. Show that M consists exactly of the set of roots of f. Show that $\left[M: \mathbb{F}_{p}\right]=n$. Explain why this fact also shows the existence of an irreducible polynomial of degree n in $\mathbb{F}_{p}[x]$.
3. (a) Prove that $\Phi_{12}(x)=x^{4}-x^{2}+1$, and that it is irreducible over \mathbb{Q}. Factorise it into irreducibles over \mathbb{F}_{p} when $p=2,3,5,13$.
(b) If p is any prime with $p>3$ show that $p^{2}-1$ is divisible by 12 , and deduce that Φ_{12} is reducible over \mathbb{F}_{p} for every prime p.
4. For this exercise recall the definition of a group action on a set. Let $f \in K[x]$ be a separable degree n polynomial, let M be its splitting field and $G=\Gamma(M: K)$ be the Galois group of M. Let $A=\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \subseteq M$ be the set of roots of f. Let $S(A)$ be the set of permutations of the roots of f.
(a) Show that G acts faithfully on A (this is equivalent to showing that there is an injective group homomorphism between G and $S(A)$).
(b) Show that if f is irreducible, then G acts transitively on A (this is equivalent to show that for any $\alpha_{i}, \alpha_{j} \in A$ there exists $\sigma \in G$ such that $\left.\sigma\left(\alpha_{i}\right)=\alpha_{j}\right)$.
5. Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting field:
(a) $x^{2}+1$ over \mathbb{R};
(b) $x^{3}-1$ over \mathbb{Q};
(c) $x^{3}-5$ over \mathbb{Q};
(d) $x^{6}-3 x^{3}+2$ over \mathbb{Q};
(e) $x^{5}-1$ over \mathbb{Q};
(f) $x^{6}+x^{3}+1$ over \mathbb{Q}.
(g) $x^{p^{n}}-x-t$ over $\mathbb{F}_{p^{n}}(t)$ (you can assume that this polynomial is irreducible over $\left.\mathbb{F}_{p^{n}}(t)\right)$
6. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is Galois over \mathbb{Q}, and find its Galois group.
