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DAN CIUBOTARU

While a group can be defined abstractly via a set of axioms, in ‘nature’, groups manifest themselves via
their actions on various spaces, as symmetries of various objects or mathematical and physical systems.
For example, the dihedral group with 8 elements can be defined abstractly with generators and relations,
but we tend to think of it as the group of symmetries of a square. The action of a dihedral group on
the plane containing the regular polygon is a 2-dimensional representation of this group. More generally,
a representation of a group G on a vector space V is an ‘action’ of G on V, i.e., a group homomorphism
G — GL(V), where GL(V) is the group of invertible transformations of V. For example, whenever one
has a group G-action of set X, there are natural G-representations V' attached such as the linear space of
functions on X with values in a fixed field. The typical questions in representation theory are to determine
the G-invariant subspaces of a representation V' and to ‘classsify’ all the irreducible representations (those
which do not have proper nonzero invariant subspaces).

Representation theory is ubiquitous in modern mathematics. While the original motivation at the end of
the 19th century may have been a quest for understanding the structure of groups via their linear actions,
nowadays the main directions in representation theory come from abstract harmonic analysis, mathematical
physics, or number theory (e.g., the Langlands programme).

In this course, we begin in the general setting of modules over associative unital algebras (an algebra has
both the structure of a ring and a compatible structure of a vector space, think of the ring of all n by n
matrices with coefficients in a field, for example). Then we specialise to the setting of semisimple associative
algebras and we apply the theory to the group algebra of a finite group G. We continue with the concept of
complex characters of a finite group which is a clean and beautiful part of the theory. Finally, we present
certain applications to the structure of finite groups and connections with algebraic number theory, most
notably Burnside’s theorem which says that every group of order p®q® (p, ¢ primes) is solvable.

1. ALGEBRAS AND MODULES

1.1. Definitions. We begin by defining some basic notions in algebra: rings, algebras, modules. All of this
(with the possible exception of algebras) has been defined in the Part A “Ring and Modules” option.

Definition 1.1. A ring is a triple (A, +,-), where A is a set, + and - are binary operations on A (addition
and multiplication, respectively), such that

(1) (A,+) is an abelian group;

(2) - is associative';

(8) +,- satisfy the distributivity laws.

The ring A is called commutative if - is commutative. The rings in this course will all have identity 1 € A
(with respect to multiplication)?.

A left ideal I of A is a subgroup of (A, +) such that a-i € I for all a € A and i € I. We similarly have the
notion of right ideal and two-sided ideal (left and right). If T is a two-sided ideal, we may define the quotient
ring A/I, which is the set {a + I | a € A} with the operations

(a+D)+b+I)=(a+bd)+1I, (a+I)-(b+I)=a-b+1.
Definition 1.2. Let k be a field. A k-algebra A is a ring A which is also a k-vector space such that
(Aa)-b=a-(\b) = \a-b).
IThere exist interesting nonassociative rings, e.g., the Lie algebras, but we won’t consider them in this course.

2There exist important associative rings with no identity, e.g., most of the convolution rings that appear in analysis or in
infinite-dimensional representation theory.
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The dimension dimy A of A as a vector space is called the dimension of the algebra A.

Example 1.3. (1) If F is a field extension of k, then F is a commutative k-algebra.
(2) The polynomial ring in n variables k[x1, ..., x,] is a commutative k-algebra.
(8) The ring of n x n matrices M, (k) with entries in k is a (noncommutative) k-algebra.
(4) Let V' be a k-vector space. Consider the endomorphism ring

Endy(V) ={T :V — V k-linear map},

under the addition and composition of linear maps. This is k-algebra. The identity is the identity
map. If V is finite dimensional, then it is isomorphic to k™, and Endy (V) can be identified with
M, (k).

(5) A k-algebra A is called a division algebra if every element 0 # a € A is invertible, i.e., there exists
be A such thata-b=1=1b-a.

Clearly, every field extension of k is a division algebra. The most famous example of a division

algebra which is not a field is the R-algebra H of real quaternions. This is the 4-dimensional R-algebra
with R-basis {1,14,j,k} and multiplication defined by the relations

it =5 =k = -1,
i =k=—ji, jk=1i=—kj, ki=j=—ik.
For every element x = a + bi + ¢j + dk € H, define the conjugate T = a — bi — c¢j — dk. It is easy to

check that x¥ = Tx = N(x) - 1, where N(z) = a® + b2 + ¢* + d*. This shows that if x # 0, then x is

invertible and x~1 = N%I)fc.

(6) If Ay, ..., A, are k-algebras, their direct product is the algebra
Ay X oo xAn:{(al,...,an) |CLZ' GAZ', ].S’LSTL},

where addition and multiplication are defined componentwise.

1.2. The group algebra. An important example is the group algebra. If G is a group, we define kG to be
the vector space with basis {v, | ¢ € G}. Here v, are just some symbols indexed by g € G. Then we define
the multiplication by

Vg1 *Vgs = Vgiga-
geG GgVgs where a4 € k and only finitely many a, are nonzero (so that
bgvy is another element in kG, then

Ty = Z agbpvgn = Z(Z abi—14)vs (1.1)

g9,h€G seG teG

A typical element in z € kG is 2 =)

the sum is finite). If y =37 5

It is immediate that kG is a k-algebra.

Example 1.4. Take C5 = (£ | €& =1). If z,y € kC3 are © = ve + 2vg2 and y = vy + vg, then z -y =
2v1 + v +3’U§2.

It is tedious to carry the notation v, in the group algebra. If we think of G as a multiplicative group, then

we can write ¢ = ) __~aqg in place of x = > __~ ayv,, with no danger of confusion.

geG geG

1.3. Homomorphisms. If A is a k-algebra, the ideals in A are the usual ideals with respect to the ring
structure. If I is a two-sided ideal of A, then A/I is the quotient k-algebra. A subalgebra of A is a k-subspace
which is also closed under the multiplication.
If B is another k-algebra, an algebra homomorphism is a map ¢ : A — B such that
(1) ¢ is a homomorphism of rings with identity, and
(2) ¢ is a k-linear map.

We then have the three usual isomorphism theorems, whose proof is always the same, and therefore we skip.?

Theorem 1.5 (First isomorphism theorem). If ¢ : A — B is an algebra homomorphism, then ker ¢ is a
two-sided ideal of A, im ¢ is a subalgebra, and A/ ker ¢ = im ¢.

3When you take the Part C course “Category Theory”, you will see that these theorems and their proofs are general “abstract
nonsense” concepts.
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Theorem 1.6 (Second isomorphism theorem). Suppose B is a subalgebra of A and I is a two-sided ideal of
A. Then BI is a subalgebra of A, BN I is an ideal of B and BI/I 2 B/BN1I.

Theorem 1.7 (Third isomorphism theorem). Suppose I is a two-sided ideal of the algebra A and J is a
two-sided ideal of I. Then I/J is an ideal of A/J and (A/J)/(I/J) = A/I.

In a k-algebra A, the field k can be identified with k - 1, where 1 is the identity in A. More precisely, we
consider the map 7: k = A, A +— X\-1. This is a k-algebra homomorphism, and it is injective, because A is a
k-vector space and 1 # 0, hence A -1 =0 if and only if A = 0. We will make this identification implicitly.

1.4. Modules.
Definition 1.8. Let A be a ring. A left A-module M is an abelian group with an action A x M — M,
(a,m) — a-m, satisfying

(1) a-(mi+mz2) =a-mi+a-ms;

(2) a-(b-m)=(ab)-m;

(3) (a+b)-m=a-m+b-m;

(4) 1-m=m.

Notice that if A is a k-algebra and M is an A-module, then M is also a k-vector space (thinking of k as a
subfield of A as mentioned before):
Am = (Al)-m, Xek, meM.

If M and N are A-modules, a map f: M — N is called an A-module homomorphism (or A-linear) if

(1) f(mi+me) = f(m1) + f(m2), mi,ma € M;

(2) fla-m)=ua-f(m),a € A, m € M.
If f is a A-linear then, in particular, it is k-linear. We define submodules and direct sums of modules in the
usual way, just as for modules over rings.
Example 1.9. The map € : kG — k, >  agg — >, ag is an algebra homomorphism (verify!). The kernel
I =Xkere is called the augmentation ideal of kG. By the first isomorphism theorem, kG /I = k.

Example 1.10. Recall the real quaternions H. The map ¢ : H — My(C), ¢(1) = Ida, ¢(i) = (8 _OZ),

o(j) = <_01 (1)>, o(k) = <? é), defines an injective algebra homomorphism.

If M and N are A-modules, define

Homyu (M, N)={f: M — N | f is an A-homomorphism}. (1.2)
Notice that Hom 4 (M, N) is a k-vector space. If M = N, denote
End (M) = Homu (M, M). (1.3)

Then End 4 (M) is an A-algebra with multiplication given by composition. If we regard A as a left A-module
under multiplication, then it is natural to ask what is End4(A) as an algebra.

Definition 1.11. If A is a ring (or a k-algebra) define the opposite ring (or algebra) to be A® = A as an
abelian group (or k-vector space), but with the multiplication in A°® given by

a-opb=0-a,
where b+ a is the multiplication in A.

For every a € A, define the map r, : A — A, ro(x) = xa. Since the multiplication by a is on the right, it
is clear that r, is an endomorphism of left A-modules, hence r, € End4(A).

Proposition 1.12. The map 1 : A°® — End4(A), a — 1, is an algebra isomorphism.

Proof. Let 14 be the identity in A. Begin by noticing that if f € End(A), then f(a) = f(a-14) = a- f(14),

so every endomorphism of A is uniquely determined by where it sends 14. In particular, f = ry(,). This

means that ¢ is surjective. It is also injective since r, = rp implies that r4(14) = rp(14), hence a = b.
Next, it is immediate that r, + 7, = r44p. To check the multiplication, we see that (r, ory)(x) = rq(ab) =

xba = 14q(x), S0 14 07y = 74.,,6 and the claim is proved. O
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Example 1.13. If A = M, (k) is the matriz algebra, then A°® = A as algebras, with the isomorphism given
by the matrixz transpose.

Remark 1.14. The group algebra kG is isomorphic to its opposite algebra (kG)°P with the isomorphism given
by -, 499 > D, 099
1.5. Representations. Let A be a k-algebra. A representation of A is a pair (p, V'), where V is a vector

space and p : A — Endy (V) is an algebra homomorphism.
Every A-representation (p, V') gives rise to an A-module on V via

a-v=pla).

Conversely, if V' is an A-module, we define an A-representation by setting p(a)v = a-v. So the notions of A-
representations and A-modules are the “same thing”. (In categorical language, we say that the corresponding
categories are equivalent.)

A particularly important case is when G is a group and A = kG is the group algebra. A G-representation
is a pair (p, V'), where V is a vector space and p : G — GL(V) is a group homomorphism. We claim that
G-representations and kG-modules are the “same thing”. In one direction, if (p, V') is a G-representation,
define a kG-module structure on V' by setting

O agg)-v=>"a, p(g).

Here > g Gay denotes an element of kG and v € V. Conversely, if V is a kG-module, we define a G-
representation p on V by setting
p(g)v=g-v,
where in the right hand side we think of g as an element of kG.
We know what isomorphism for modules means. The analogous notion for representations is equivalence.

Definition 1.15. Let p; : A — Endy(V;), i = 1,2, be two representations of the k-algebra A. We say that pq
and ps are equivalent is there exists a linear isomorphism 1 : Vi — V5 such that

P(pr(a)v) = pa(a)p(v), a€A, vel.
Another way to write this relation is pi(a) = ¥~ o pa(a) o1, for all a € A.

After all of this “tautological mathematics”, let’s look at an example.

Example 1.16. Let G = Dy, = (r,o | 7" = 0?> = 1, oro~! = r71) be the dihedral group. For every
1 <m < n—1, we may define the representation p,, : G — GL(R?) = GL(2,R):
~ [cos(mf) —sin(md) (1 0
pm(r) = (sin(m@) cos(mf) )’ pml7) = 0 -1/’
where 6 = 2Z. It is easy to verify that py,(r)" = 1Id = pu(0)?, and pm(oro™) = pp(0)pm(r)pm(c) ! =
pm (1)L = p(r~1). Since the relations in G are satisfied, it follows that p,, are all representations. We will
return later to the question of whether or not they are equivalent.

Example 1.17. Suppose the group G acts on a set Q. We may define the permutation module M = k2 as
follows. Let M be the k-vector space with basis {w € Q}. Then the action of G on M is

g- (Z Apw) = Z Aw(g - w).
weN weN
This is extended to an action of kG by linearity:
(Z a'gg) ! (Z /\ww) = Z Z ag)‘w(g : w)'
geG we acG we
In this way, k) is a kG-module.

Example 1.18. IfG is a group, the trivial representation of G is (p, V'), where V- =k (i.e., a one-dimensional
vector space) and p(g)v =v for all g € G, v € V.. The trivial module of kG is V = k with the action

(Zagg)ov: (Zag)v, veV

geG geG
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2. THE JORDAN-HOLDER THEOREM

If A is a k-algebra that we would like to decompose an A-module into “atoms”, namely into simple modules.

2.1. Simple modules. An A-module M # 0 is called simple if its only submodules are 0 and M. The first
example of a simple module is the trivial module from Example 1.18.

Exercise 2.1. Let A = kS, be the group algebra of the symmetric group Sy,. Let M = {(x1,...,x,) € k™ |
1 4+ x, = 0} with the action of S, given by permutation of indices. Show that M is a simple A-module.

An important example is the following.

Lemma 2.2. Let A = M, (k) be the algebra of n x n matrices and M = k™ (column vectors), which is viewed
as an A-module by matrixz multiplication. Then M is simple.

Proof. We denote by E;; the matrix which has 1 on the (¢, j) position and 0 everywhere else. Also e; denote
the standard basis vectors of M.

Suppose N is a nonzero submodule of M. Let 0 # v = (z1,...,z,) be a vector of N. If z; # 0, then
E;; - v = x;e; which must then be in N. So e; € N. Then e; = Ej; - e; € N as well. Hence N = M. O

When A = kG, we have the equivalent notion of irreducible representation. We say that p : G — GL(V)
is reducible if there exists a proper subspace 0 # W C V such that p(g)W C W for all g € G. (We say that
W is a G-stable.) If (p, V) is not reducible, we say that it is irreducible. It is immediate that irreducible
G-representations are the same notion as simple kG-modules.

If M is an A-module, a submodule N of M is called mazximal if for every submodule L of M such that
N C L, either L= N or L =M.

If N is a submodule of M, we have a natural one-to-one correspondence between submodules of the quotient
module M /N and submodules of M containing N. This is just the obvious thing: if L is a submodule of M
containing N, then L/N is a submodule of M/N. But this implies that N C M is maximal if and only if
M/N is a simple module.

Now suppose M is a simple A-module. Fix m € M, m # 0. We may define a map

fmi:A—= M, ara-m.
Since f,,(1) =m # 0, this is a nonzero map. It is trivial to check that f,, is A-linear:
fm(az) =(ax) - m=a-(v-m)=a- f(z), ax€A

By the first isomorphism theorem A/ ker f,,, 2 im M = M since M is simple. But ker f,, is a left ideal of A,
which means that every simple A-module can be realised as a quotient M = A/I for a (maximal) left ideal of
A. In particular, this means that if A is a finite-dimensional k-algebra, then every simple A-module is finite
dimensional over k.

2.2. Composition series. Let M be an A-module.
Definition 2.3. A composition series for M is a sequence of A-submodules of M
O=MyCM,CMyC---CMy=M

such that M1 /M; is a simple module for all i. The integer ¢ is called the length of the series, and the simple
modules M;1/M; are called the composition factors.

Example 2.4. Let G = C), = (£ | ¥ = 1), where p is a prime number. Set k =T, the field with p elements.
Consider the module M = k(x1,...,x,) = kP, where the action is given by

f' T, =X +T;—1 (.Io = 0)

1 10 0
01 1 0

In other words, in the basis B = {x1,...,x,}, the matriz of & looks like [{]g = 00 1 0. This
00 0 ... 1

means that [§ — 1|g is strictly upper triangular with 1’s immediately above the main diagonal. Therefore
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(€ —1]% = 0. But since we are in characteristic p, (§ —1)P = &P — 1, so €]} = 1. This shows that the action
is well defined and M is indeed a kC',-module.

It is clear that M; = k{xy,...,x;) are all submodules of M. Moreover M;/M;_1 = k(T;) is the trivial
Cp-module. This means that M has a composition series of length p given by the submodules M; and all of
the composition factors are isomorphic to the trivial module. (It is easy to see in fact that the only simple
module of kC,, is the trivial module!)

Lemma 2.5. Let M be a finite-dimensional A-module and N C M a submodule. Then M has a composition
series containing N .

Proof. Suppose N # M. If N and M/N are both simple, then 0 C N C M is a composition series of M.
Otherwise, say for example that M /N is not simple. We may find N’ such that N C N’ C M, so we extend
the chain of submodules to 0 C N C N’ C M and continue. (Similarly with 0 C N if N is not simple.) Since
M is finite dimensional, this process has to stop. O

Theorem 2.6 (Jordan-Holder Theorem for finite-dimensional modules). Let M be a nonzero finite-dimensional
A-module. Then M has a composition series and all composition series are equivalent: they have the same
length and the same composition factors (up to isomorphism) counted with multiplicity.

Proof. The proof is by induction on dimy M. The base case is when dimy M = 1. Then 0 C M is the unique
composition series. Assume dimy M > 1 and suppose
(i) 0OCcMyC---CMp_1CM,=M,
(11) 0OCNC---CNy_1CNe=M
are two composition series of M. If My_1; = Ny_1, then we are done by the induction step applied to
M’ := Mj,_1 = Ny_1. Otherwise, My_1 # Ny_1, so Mj,_1 + Ny_1 is a strictly larger submodule than Mj,_;
and Ny_q, implying that M, 1 + Ny_1 = M.
Set L = My_1 N Ny_1. By the second isomorphism theorem,
M/My_1 = (My—1+ Np—1)/Mp—1 = Np—1 /(M1 N Ng—1) = Ng_1/L, (2.1)
and similarly
M/Ny_1 = My_1/L.
In particular, Ny_1/L and Mj_1/L are both simple.
Let 0 C Ly C --- C Ly = L be a composition series of L. Then
(iii) 0cLyCc---CLiy=LC M1 CM,
(ivyocLyc---CLy=LCNi1CM
are composition series of M. They are equivalent, both of length ¢ 4 2, and the composition factors are given
by the composition factors of L plus M/Ny_y = My_1/L and M/Mjy_1 = Ny_1/L. On the other hand, by
induction, the composition series (i) and (iii) are equivalent, and so are (ii) and (iv). Since the equivalence
of composition series is obviously an equivalence relation, it implies that (i) and (ii) are equivalent too. [

Example 2.7. Let A = M, (k) viewed as a left A-module. Denote by N; the subspace of matrices where the
last (n — 1) columns are all zero. It is clear that N; is a left A-submodule of A and N;y1/N; = K™ which we
have seen it is a simple M, (k)-module. Hence

0OCN,C---CN,=4
s a composition series of A and all the composition factors are isomorphic to k™.

Corollary 2.8. Let A be a finite-dimensional k-algebra. Fvery simple A-module S appears as a composition
factor in every composition series of the A-module A.

Proof. By Theorem 2.6, it is sufficient to prove that S occurs in one composition series of A. We have seen
that S must be isomorphic (as a left A-module) to S = A/I, where I is a left ideal of A. But left ideals
of A are the same as submodules of A. By Lemma 2.5, there exists a composition series of A containing I,
which, since A/T is simple, must be of the form ) = My C My C --- C My;_y = I C A. This exhibits S as a
composition factor.

O

Example 2.9. The only simple module of M, (k) is k™. This follows from Example 2.7 and Corollary 2.8.



INTRODUCTION TO REPRESENTATION THEORY 7

Corollary 2.10. If A is a finite-dimensional k-algebra, there are only finitely many isomorphism classes of
simple A-modules.

Proof. This is immediate from Corollary 2.8 since in any given composition series, only finitely many simple
modules appear. O

3. BASIC RESULTS: SCHUR’S LEMMA, MODULES FOR COMMUTATIVE ALGEBRAS

3.1. Schur’s Lemma. This is one of the first results in representation theory. Let A be a k-algebra. The
first part is a triviality.

Lemma 3.1 (Schur’s Lemma). (1) Let M, N be simple A-modules and f : M — N be an A-homomorphism.
Then f =0 or f is an isomorphism.
(2) Suppose that k is algebraically closed and let M be a finite dimensional simple A-module. FEvery
A-homomorphism f: M — M is a scalar multiple of the identity, i.e., f = A1dy; for some X\ € k.

Proof. (1) Since ker f is a submodule of M which is simple, either ker f = 0 (f injective) or f = 0. In the first
situation, we look at im f which is a nonzero (because f # 0) submodule of N. Since N is simple, im f = N
(f surjective).

(2) Since f : M — M is A-linear, it is k-linear. As k is algebraically closed, there exists A € k an eigenvalue
of f. Let 0 # v € M be a A-eigenvector. Consider g = f — Aldy; : M — M. This is A-linear, and v € kerg.
Hence ker g # 0 and by part (1), g = 0, which implies f = AIdy,. O

The second part of Schur’s Lemma says that End 4 (M) = k when M is simple finite dimensional and k is
algebraically closed.

Example 3.2. The second part of Schur’s Lemma is false when k is not algebraically closed. For example,
take G = C3 = (£ | € = 1) acting on M = R? by rotations: & acts by the rotation with angle of %*. Notice
that M is a simple RC5-module: if it were not, then it would have a one-dimensional submodule, which is
the same as a line stable under the action of &; but & does not have real eigenvalues. We may think of an
element of Endre, (M) as a 2 x 2 real matriz which commutes with the matriz given by the action of &:
_ [cos(2m/3) —sin(27/3) _ ~

R(27/3) = <sin(27r/3) cos(27/3) ) Then we see that Endgre, (M) = R(I, R(27/3), R(—27/3)) = RC5.
3.2. Central characters. Suppose that k is algebraically closed and let M be an A-module. Recall that
the centre of A is

Z(A)={z€ A|za=az, forallac A}.
For every z € Z(A), we can define a map
fo: M — M, f.(m)=z-m.

Then f.(a-m)=1z-(a-m)=(za) - m=(az)-m=a-(z-m)=a- f,(m), which shows that f, is A-linear. If
M is simple finite dimensional, then by Schur’s Lemma, there exists A, € k such that f,(m) = \,m, for all
m € M.

Proposition 3.3. Suppose M is a finite-dimensional simple A-module, where A is an algebra over the
algebraically closed field k. There exists a algebra homomorphism, called the central character of M

ey Z(A) =k, oz Al
Proof. Tt is immediate from the definition of A, that cj; is in fact an algebra homomorphism. O

Corollary 3.4. Let A be a commutative algebra over an algebraically closed field k. Then every simple finite
dimensional A-module is one dimensional.

Proof. Since A is commutative, then A = Z(A). Suppose S is a simple A-module. Then by Proposition 3.3,
every a € A acts by a scalar cg(a) multiple of the identity. This means that every one dimensional subspace
of S is A-stable, which implies that S must be one dimensional. O

In particular, if A is a finite-dimensional commutative k-algebra (algebraically closed k), then all simple
A-modules are one dimensional.
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Example 3.5. Let G be a finite abelian group. Then all irreducible representations of G over an algebraically
closed field are one dimensional. We saw in Example 3.2 that this is false if the field is not algebraically
closed.

3.3. The Pontrijagin dual. Suppose G is a finite abelian group. Then, as a consequence of the Schur
Lemma, we now know that every irreducible complex G-representation is one dimensional, i.e., it is a group
homomorphism
p:G— GL(C)=C*.

Since these are one-dimensional representations, any two different homomorphisms are in fact non-isomorphic.
Notice also that since G is finite, every g € G has finite order, and so p(g) has finite order in C*. But then
p(g) € St, where

St ={z € C* | |z| = 1} with multiplication
is the circle group. So we may think of these one-dimensional representations as group homomorphisms
p:G— St
Definition 3.6. The Pontrijagin dual of G is G = {p : G — S* group homomorphism} endowed with the

pointwise product, (p1 - p2)(g) = p1(9)p2(9), g € G. This is group with identity element 1(g) = 1 for all g
(the trivial representation of G) and inverses p~1(g) = p(g~') for all g € G.

In other words, when G is an finite abelian group, the set of isomorphism classes of irreducible G-
representations over C has a natural structure of an abelian group.

Lemma 3.7. Let Gy and G5 be two finite abelian groups and G1 x G their direct product. Then we have a
natural isomorphism G, X Go =2 G1 X Ga.

Proof. Left as an exercise. O

By the fundamental theorem of finitely generated abelian groups, we know that every finite abelian group
is a direct product of finite cyclic groups. In light of the previous lemma, we need to understand the dual of
C,,, the cyclic group of order n.

Suppose C,, is generated by an element ¢ such that ¢® = 1. Fix a primitive n-th root ¢, of 1 in S'. For
every m € Z, define

pm : Cpn — S, & (™. (3.1)
It is clear that p,, = pi if and only if m = k mod n. Hence we have a set of nonisomorphic one-dimensional
representations {p,, : C,, — S | m € Z/nZ}.

On the other hand, if p : C,, — S! is any group homomorphism, it must map & to an n-th root of 1, and
therefore p = p,, for some m. This means that

Cn = Z/n (3.2)
as sets.
Lemma 3.8. C), = (Z/nZ,+) = Cy, as abelian groups.

Proof. Of course, we only need to prove the first isomorphism. In other words, we need to check that the set
bijection Z/nZ — C,, given by m +— p,, is a group homomorphism, or in other words that py,ir = pm - pr-
Since these homomorphims are uniquely determined by their value on £, we check:

Pmk(€) = G TF =G CF = pm (&) - pr(€) = (om - p&) (£)-
O

Proposition 3.9. There is a (non-canonical) isomorphism as abelian groups G = G for any finite abelian
group G. In particular, |G| = |G|.
Proof. This is immediate from the previous lemmas and the classification of finite abelian groups. The fact

that this isomorphism is non-canonical has to do with the fact that we needed to choose primitive roots on
1in S in order to construct the one-dimensional representations. O

One should compare the result above with the familiar situation of finite dimensional vector spaces and
their duals. Also, just as for finite dimensional vector spaces, we have the following result.
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Proposition 3.10. There is a canonical isomorphism of abelian groups GG,

Proof. Left as exercise (mimic the proof from vector spaces). O

4. SEMISIMPLE MODULES AND SEMISIMPLE ALGEBRAS
4.1. Semisimple modules. Let A be a k-algebra and let M be an A-module.

Definition 4.1. (1) The module M is called semisimple if there exists a family of simple submodules
{Si i eI} such that M = @, Si.
(2) We say that M is completely reducible if whenever N is a submodule of M, there exists another
submodule N’ (a complement) such that M = N & N'.

Proposition 4.2. Suppose M is a finite-dimensional A-module. Then M is semisimple if and only if it is
completely reducible.

Proof. Suppose first that M is completely reducible. If M is simple, then it is semisimple. If not, then let
U be a nonzero proper submodule of M. By complete reducibility, there exists a submodule V' such that
M = U@ V. Since U and V are both finite dimensional and of strictly smaller dimension than M, by
induction we may assume that U and V are both semisimple, and then so is M.

For the converse, let U be a submodule of M, U # M. We wish to construct a complement for U. Let
C = {W submodule of M | WNU = 0}. Since 0 € C, then C # (. Moreover, M is finite dimensional, and
so there must exist an element V of C of maximal dimension. If M = U 4+ V, then M = U &V, so we
constructed the complement. Otherwise, write M = @.5;, where S; are simple submodules and there exists
a simple submodule S = S; of M such that S ¢ U + V. Since S is simple, this means that SN (U +V) = 0.
Set V! =V + 5. We claim that V' NU = 0 and this leads to the contradiction with the maximality of V since
dimV’ > dimV. Indeed, let u=s+ve V' NU,thens=u—-veU+V,sos=0anduecVNU=0. O

Remark 4.3. One can prove Proposition 4.2 for infinite dimensional modules as well, where the proof uses
Zorn’s Lemma, see [1, Theorem 4.3] for example. The key step is to prove that if M is a cyclic module, i.e.,
M = Am # 0 for some m € M, then M has a maximal submodule.

Example 4.4. (1) If A =k, then A-modules are the same as k-vector spaces. In this case every k-vector
space is semisimple (a direct sum of one-dimensional subspaces given by the existence of a basis) and
completely reducible (which is the linear algebra fact that every linearly independent subset can be
extended to a basis).

(2) If A= M,(k), then A is a direct sum of its column left ideals, so it is a semisimple A-module.

(8) If G is a finite group acting transitively on a finite set ), then the permutation representation k{2,
chark = p, is not a semisimple kG-module if p||SY|. (Ezercise.)

(4) A direct sum of semisimple modules is a semisimple module.

Here are the first easy properties.

Lemma 4.5. If M is a completely reducible A-module, then every submodule and every quotient of M are
completely reducible modules.

Proof. Let N be a submodule of M and U a submodule of N. Then U is a submodule of M and there exists
a submodule V of M such that M = U & V. We claim that N = U & (VN N). Firstly, UNn (VN N) =
(UNV)NN =0NN = 0. Secondly, if n € N, then n € U ® V, so we may write n = u + v. But then
v=n—u¢& N since U C N.

For quotients, let N be a submodule of M. As M is completely reducible, there exists N’ submodule of
M such that M = N @ N'. But then M/N = N’ and this is completely reducible as we have just proved. [

4.2. Semisimple algebras. From now on, unless explicitly stated otherwise, the algebra A is
assumed to be finite dimensional. By the equivalence between complete reducibility and semisimplicity,
the same claims in Lemma 4.5 hold for semisimple A-modules.

Definition 4.6. An algebra A is called semisimple if it is semisimple as an A-module.

Example 4.7. If A= M, (k), then A is semisimple.
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A particular case is the following. If A is a semisimple algebra and I is a left ideal of A, then I is an
A-submodule, hence both A and A/I are semisimple A-modules.

Proposition 4.8. A is semisimple if and only if every finite-dimensional A-module is semisimple.

Proof. The ‘only if’ part is clear since A itself is a finite-dimensional A-module.
For the other implication, suppose M is a finite-dimensional A-module. Fix a k-basis of M, {mq,...,mg}
of M. Define
CAD - A—)M, sy — i 0 My
fide - 0A—M, (a,...a)= ) a-m

¢ copies

This is an A-linear map: for every a € A,

fla((a,...,ap)) = f((aaq,...,aap)) = Z(aai) Sm; = aZaimi =af((a,...,ap)).

The map f is also clearly surjective since every element of M is a k-linear combination of the {m;}. The
direct sum of copies of A is a semisimple A-module. By the first isomorphism theorem, M is isomorphic to
a quotient of this direct sum, hence it is also semisimple. O

Lemma 4.9. (1) Let A be a semisimple algebra and I a two-sided ideal of A. Then the algebra B = A/T
is semisimple.
(2) Let Ay, Ay be k-algebras. Then Ay x Ay is semisimple if and only if A1 and Ay are semisimple.

Proof. (1) Let V be a finite dimensional B-module. Then we may regard V as a finite-dimensional A-module
such that -V = 0. Let U be a B-submodule of V' (which we can identify with an A-submodule of V' such
that I-U = 0.) Since A is semisimple, there exists a complement W, an A-submodule of V', such that
V =U@W as A-modules. But since W C V', we also have I - W = 0, so W can be viewed as a B-module,
hence we found a B-complement of U.

(2) Exercise. O

4.3. Artin-Wedderburn Theorem. This is an important result which gives a description of finite dimen-
sional semisimple algebras. We are only concerned with the case when the field k is algebraically closed.

Theorem 4.10. Let A be a (finite dimensional) k-algebra, where k is algebraically closed. Then A is semisim-
ple if and only if
A= M, (k) x...M,_(k),

for a unique set of integers ny,...,ns € N.

Proof. The proof is non-examinable. We will not give a complete proof, but only explain the ideas. You can
find a complete proof in many texts, for example, in [1].

The starting point is to recall from Proposition 1.12 that A = End4(A)°P as k-algebras. If we show that
Enda(A) is a product of matrix algebras, then so is End4(A)°P (since a matrix algebra is isomorphic to its
opposite), so the claim follows for A.

To avoid potential confusion, let’s replace A by some arbitrary finite dimensional A-module M. Then M
is semisimple and write M = Zle S, where S; are simple A-modules. (At the end, we can can specialise
M = A.) Recall that End4(M) is an algebra of A-homomorphisms with composition. By the easy part of
Schur’s Lemma, there are no nozero A-homomorphisms between S; and S; unless S; = .S;. So group together
the S;’s according to isomorphism classes and identify the isomorphic copies of the same simple module. So
we write

M = @;:1(51-3_ DD Szj)
~—_—————
n; times

Then, using that there are no nonzero homomorphisms between nonisomorphic simple modules:

Enda(M) = [[ Enda(S;, @ -+ @ 8;))
N—_— ———

Jj=1 ‘
n; times

as algebras. This reduces the problem to describing the algebra
End4(S B S 4.1
n A( D ) ) ( )

n times
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where S is a simple A-module. (Notice that so far we have not used that k is algebraically closed.) To
orient ourselves and see how matrix algebras will appear, think of the simplest case A = k and S = k, then
Endy (k™) = M, (k).
Now we assume that k is algebraically closed. We claim that
Enda (S @ . ®S) = M,(k). (4.2)
n times
We use the second part of Schur’s Lemma, which says that End4(S) = k. To distinguish between the copies
of S, write S* for the i-th copy of S, 1 <i < n. Suppose ¢ : &7, 5" — &" | S% is an A-linear map. Consider
the restriction
bgi S — @St — S

where the last map is the projection p; onto the S? term. The composition is then a map ¢;; : S7 — S°.
Identifying both S* and S7 with S, we can think of ¢; ; as an element of End4(S). But this is a scalar
multiple of the identity, say the scalar is a;; € k. This defines an asisgnment

Enda(S@ - ®8S) = My(k), ¢— (ay),
n times

which is the desired isomorphism. (One needs to check that composition in the left hand side corresponds to
matrix multiplication in the right hand side, but this is not hard.) 0

Example 4.11. The theorem as stated is false if one drops the assumption k algebraically closed. For
example, consider H the algebra of real quaternions This is a division algebra and in particular, it has no
left ideals, meaning that H is a simple (hence semisimple) algebra. Clearly, dimg H = 4, so if the Artin-
Wedderburn Theorem were to hold as stated, we would have H = Mo (R) or H = M;(R)*. But these are both
false, the first because Ms(R) is not a division algebra and the second because H is not commutative.

Corollary 4.12. Let A be a finite dimensional semisimple k-algebra, A = [[7_, M, (k). Then
(1) A has exactly s simple modules (up to isomorphism) My, ..., My such that dimy M; = n;.

(2) The integer s equals the dimension dimy Z(A).
(3) dimg A =n?+...n2 =37 (dimy M,;)?.

Proof. All of these claims follow immediately from Theorem 4.10. For (1), we use the fact that each M,,, (k) has
a unique simple module V; = k™. In fact, using the semisimplicity of M, (k), we may write M, (k) = &2, V",
where V" is the space of n; x n; matrices with 0 everywhere except on the r-th column. Clearly V" = V; for
all . Then, as A-modules:
A=ei, &L, Vi

This defines a composition series of A composition factors isomorphic to {V;" |1 <i<s, 1 <r <n;}. In
this set, for every fixed 4, V;" = Vir/ = k™. Moreover, if ¢ # j, then V" 2 Vj’“/. To see this, consider the
element a; € A corresponding to (0,...,0,1d,,,0,...,0) € []]_; M,, (k). Then a; acts by the identity on V;",
but it acts by 0 on Vf/. Since every simple A-module (up to isomorphism) must appear in every composition
series of A, we conclude that A has s nonisomorphic simple modules of dimensions n;.

(2) We have Z(A) = Z(I1;_; My, (k) =T1,_, Z(M,,(k)) = [1;_; kId,,, = k*. This means that dimy Z(A) =
s.

(3) The first equality is immediate since dim M, (k) = n7. The second one now follows from (1). O

4.4. Maschke’s Theorem. We would like to apply Theorem 4.10 to finite groups.

Theorem 4.13. Let G be a finite group and k a field. The algebra kG is semisimple if and only if chark [ |G].
In particular, CG is semisimple.

Proof. Suppose that char k / |G|. Then |G| is invertible in k. Let U C kG be a submodule. We want to find
a complement V which is a kG-submodule. As k-vector spaces, there exists V'’ such that kG = U & V' as
k-vector spaces.

Let f : kG — U be the projection f(u) = u, f(v’) = 0. This is only k-linear! We want to define a kG-linear
projection. This is possible since we can average over G:

! Zg “flg™!2), 2 €kG. (4.3)

¢ : kG — U, ¢(z):@
geG
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For every h € G,

¢(h-x) = |G|ng “hex) = |th [hex) = heg(x),
geG g1€G
where we made the change of variable g; = h~!'g. This means that ¢ is G-linear and hence kG-linear. Now
¢ is also surjective because

o(u) ng Zggluzu,ueU.
IGI = |G| =
Define V' = ker ¢ which is a kG-submodule. Because of the rank-nullity theorem (over k), dimk = dim U +
dimV. Moreover, if z € U NV, then ¢(z) = z (because x € U) and ¢(z) = 0 (because x € V). Hence
U NV =0. This means that kG = U & V which shows that kG is completely reducible, hence semisimple.
For the converse, recall the exercise which showed that when char k divides |G|, then kG has a one-
dimensional submodule U = k(}_ . g) which does not have a complement. O

Corollary 4.14. Suppose that k is algebraically closed of characteristic p and p J|G|. Then kG has exactly s
nonisomorphic simple modules, where s is the number of conjugacy classes. If ny,...,ns are the dimensions
of the simple modules, then

|Gl =ni+-+n.
Proof. Via Maschke’s Theorem, we may apply the Artin-Wedderburn Theorem, more precisely Corollary

4.12. Then the only remaining thing is to remark that the centre Z (k@) is spanned by do = dec g, where
C ranges over the conjugacy classes of G. Hence dimy Z(kG) equals the number of conjugacy classes in G. [

Remark 4.15. In the next subsection, we will give another proof of Maschke’s Theorem when k = C, using
the notion of unitary representations.

Example 4.16. If G = C, and k has characteristic p, then Maschke’s Theorem says that kCy, is not semisim-
ple. In this case, one can see directly that the only simple kC), module is the trivial (one-dimensional) module.

4.5. Unitary representations. If k = C, Maschke’s Theorem has another easy and conceptual proof.

Definition 4.17. Let V be a C-vector space. An inner product on V is a pairing (, ):V xV — C which
(i) sesquilinear: (A\v1 + v, u) = A (v1,u) + Aa(va,u), vi,v2,u € V, X € C;
(i) hermitian: (v,u) = (u,v);
(#ii) positive-definite: (v,v) >0 for allv €V, and if (v,v) =0 then v =0.

A subset {v; : i € I} of V is called orthogonal if (v;,v;) = 0 for all ¢ # j. It is called orthonormal if, in
addition, (v;,v;) = 1 for all 4.

Example 4.18. (1) Let V = C" be the standard n-dimensional C-vector space. Set (v,u) = > Dyu;,
where v = (v;)1<i<n and u = (u;)1<i<n are vectors in V. This is the standard inner product on V.
(2) * Suppose X is a measure space with measure . Let L?(X) denote the space of integrable functions
(modulo the equivalence relation ’almost everywhere’) f : X — C such that

I£1l2 = (/X [f (@) dp(z) < 00)'/2. (4.4)

The space L*(X) is a metric space with the metric do(f,g) = ||f — gll2. An inner product on L*(X)
s defined by

mmzéﬁ%www. (4.5)

Holder’s inequality says that |(f,g)2| < ||fll2llgll2; so this pairing takes finite values indeed. It is
moreover true that L*(X), just as C", is a complete metric space; such spaces are called Hilbert
spaces.

41f you took Part A Integration.
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Lemma 4.19. Let V be a C-vector space with an inner product ( , ) and let U be a subspace. Then
L={veV|(v,u) =0, forallucU}
is a subspace of V and UNU*+ = 0. If V is finite dimensional, then V =U G UL,

Proof. The fact that U+ is a subspace follows immediately from the conjugate-linearity of ( , ) with respect
to the first variable. For the second claim, suppose u € U N U+. Then (u,u) = 0, hence u = 0.
For the last claim, let {uj,...,u,} be an orthonormal basis of U. (This exists by the Gram-Schmidt

procedure.) Then we may extend this to a basis {u1,..., un,w1,...,w;} of V. Again by Gram-Schmidt, we
make this into an orthonormal basis {u1, ..., Uy, w;,...,w/}. The span of {w,...,w]} is in UL (since the
elements are orthogonal to U), and since U N U+ = 0, we have that they form a basis of U+. The claim
follows. O

A better way to phrase the last part of the proof is to define the projection onto U by

m

p:V—=U »pw) = Z(v,ui)ui.
i=1
Notice that p(u) = u for all u € U, hence p(p(v)) = p(v) for all v € V. For every v € V, v = p(v) + (v —p(v)),
and v — p(v) € kerpy = U™,
This means that if we have a well-defined projection onto U even if V is infinite dimensional, then we can
still conclude that V = U @ U+. This is precisely why for infinite dimensional inner product spaces, one
needs to assume completeness. The basic result is the following.

Theorem 4.20 (See Part A Metric Spaces). Let V' be a Hilbert space with metric d and let U be a closed
subspace of V.. Then for every v € V,

d(v,U) = inf{d(v,u) :u €U} >0

is attained at some point in U. Define py(v) to be the point of U where d(v,U) is attained. Thenpy : V — U
is a projection of V onto U and U+ = ker pyy. Moreover,

V=UasU".

Definition 4.21. Let M be a G-representation. We say that M is pre-unitary if M has a positive-definite
inner product (, )y which is G-invariant, i.e.:

(g-mi,9-ma)y = (m1,mo)n, g €G, mi,mg € M. (4.6)

Notice that an equivalent way of phrasing the invariance condition is (g -m1,ma2)ar = (m1, g~ ma)ar.
If, in addition, M s a Hilbert space (automatically true when M is finite dimensional), then we say that
M s unitary.

The main first property of unitary modules is the following observation.

Proposition 4.22. Suppose that M is a preunitary CG-module. If N is a submodule of M, then N+ is also
a submodule of M and N NN+ = 0.

Proof. We need to prove that N is a submodule, the rest following from the statements for vector spaces.
Let m € N+ and g € G. Then

(g-m,n)y = (m,gf1 -n =0, for all n € N.
By definition, this means that g-m € N+ as well. O

Corollary 4.23. Suppose M is a unitary G-representation and that N is a closed subrepresentation of M.
Then M = N @ N+ as G-representations.

Proof. This is immediate from the previous proposition and the decomposition of Hilbert spaces from before.
O

Remark 4.24. The decomposition in Corollary 4.23 applies in particular whenever M is a finite dimensional
(pre)unitary G-representation and N is any subrepresentation of M. Corollary 4.23 says that unitary modules
are completely reducible, and in fact more, since we have a canonical complement for any (closed) submodule.
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Theorem 4.25 (Maschke’s Theorem when k = C). Every finite dimensional CG-module is unitary. There-
fore CG is a semisimple finite-dimensional C-algebra.

Proof. Let V be a finite dimensional CG-module and let (, ) be any positive definite inner product on V.
Such an inner product exists, because as a C-vector space V is isomorphic to C" for n = dim V', and we can
just take the standard inner product on C"®. We make ( , ) G-invariant by averaging, i.e., define

1
(u,v)v = al (9-u,g-v). (4.7)
geG
Then (, )y is indeed G-invariant: for h € G,
1 1 B
(hu7U)V:@Z(ghuagv):ﬁ (g/~u’g/h 1-1}) (g/:gh)
9€G 9'€G

= (u,h ™" -v)y.

Since (1, )y is G-invariant, it is easy to see that it is also A-invariant. Moreover ( , )y is sesquilinear since
(, ) is. Finally,

1
(wuy =& > (g u,9-u) >0,
geG

and it is 0 if and only if (g - u,g - u) = 0 for all g, but then (u,u) = 0 hence uw = 0. So indeed V' is unitary
with respect to (, )y.

U
5. MORE LINEAR ALGEBRA: TENSOR PRODUCTS
5.1. Duals. Let k be a field. If V" and W are k-vector spaces, we denote by
V*={f:V = k| f is k-linear} (5.1)
the dual k-vector space and by
Homy(V,W) ={¢: V — W | ¢ is k-linear} (5.2)

the k-vector space of linear maps between V and W. Of course, Homy(V, k) = V*. Moreover, we use the
notation Endyx (V') = Homy (V, V) for the k-vector space of endomorphisms of V. You may recall that Endy (V)
is in fact a k-algebra under composition of linear maps.

If V is finite dimensional with basis {e; : 1 <4 < n}, then a dual basis of V* is defined by

{fi:1<i<n}, filej) =6y, 1 <i,j <n.

It is easy to check that this is indeed a basis of V'*.

In such a case, one may say that V' and V* are isomorphic, since any two vector spaces with the same
dimension are, but this isomorphism is not natural (or “canonical”), since it depends on the choice of basis
for V.

Exercise 5.1. Prove that there is always a natural injective linear map V. — (V*)*. Deduce that this is a
natural isomorphism when V is finite dimensional. (When V is infinite dimensional, the dimension of V* is
strictly larger than that of V'.)

5.2. Direct products and sums. If {V;};c; is a family of k-vector spaces, define the direct product
[[Vi={w), ien} (5.3)
iel

and the direct sum

@ Vi={(vi), i € I| v; =0 except for finitely many i}. (5.4)
iel

Both are k-vector spaces under the coordinate sum and scalar multiplication, i.e.,

(vi)ier + (V))ier = (i +v))icr,  Avi)ier = (Avi)icr, A € k.
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In general, ,.; Vi is a k-linear subspace of [[,.; Vi. When [ is a finite set, then @,.; Vi = [[,c; Vi. fV
has basis {e;} and W; has basis {e}}, then V @ W has basis {(e;,0)} U{(0,¢})}. In particular,

dim(Ve W) =dimV 4+ dim W.

5.3. Tensor products. Suppose V and W are two k-vector spaces. We define the tensor product V @ W
as follows. Let M be the k-vector space with basis (v, w) for all v € V, w € W. Notice that this a huge
vector space, for example even when V' and W are finite dimensional, M is infinite-dimensional as long as k
is infinite. Let IV be the vector subspace of M spanned by all elements of the form

(Ul + 1)27111) - (U17w) - (U27w)a (’U,’LUl +’LU2) - (v7w1) - (’U,’LUQ),
)‘(va) - ()‘va)a )‘('Ua w) - ('Ua )‘w)v
v,v1,v2 €V, w,wi,wy € W, and X € k.

Definition 5.2. The tensor product is the vector space V@ W = M/N. Denote by v @ w the image of (v, w)
nVeW.

Lemma 5.3. The tensor product space V& W is spanned by the simple tensors v ® w, meaning that every
element in VW 1is a finite sum of simple tensors. Moreover, the simple tensors satisfy the following bilinear
properties:

(i) (v1 +v2) @w = vy @ W+ vy @ Ww;
(ii) v @ (w1 + w2) =v @ wy + v @ wa;
(iii) AMv@w) = () @w=1v® (A\w).

Proof. Straightforward from the definition. O

Another way to phrase the properties in the lemma above is to say that the natural map p : VW — VW,
(v,w) = v ® w is bilinear. The tensor product satisfies the following universal property.

Lemma 5.4. Let U is a k-vector space with a bilinear map ¢ : V- x W — U. Then there exists a unique
k-linear map ¢ : V@ W — U such that ¢ = ¢ op.

In light of this lemma, we may think of V ® W as the “largest” vector space which has the bilinearity
properties from the definition. It is also easy to prove the following lemma.

Lemma 5.5. If{v; : ¢ € I} and {w; : j € J} are bases for V and W, respectively, then {v,@w; :i € I,j € J}
is a basis of V@ W. In particular,

dim(VeW)=dmV -dim W.
Exercise 5.6. Prove Lemmas 5.4 and 5.5.
Proposition 5.7. Let V,W be k-vector spaces and suppose that V is finite dimensional. Then the map
T:V'@W = Homy(V, W), foaww— (¢:V =W, ¢(v) = f(v)w),
18 a linear isomorphism.

Proof. To begin, notice that 7 is well defined since the assignment (v,w) — f(v)w is bilinear. We also
emphasize that we have only defined 7 on the simple tensors, but one extends the definition to a finite sum
of simple tensors in the obvious way, by summing up the corresponding images of simple tensors.

The inverse map is not constructed naturally, we need to fix a basis of V. Let {e; : 1 <1i < n} be a basis
of V and let {f; : 1 <i < n} be the dual basis of V*. Define

n: Homg(V, W) =V @ W, ¢+— Zfz ® ¢(ei).

i=1
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We verify directly that 7 and n are inverses to each other:

(no)(f ®w) =n(¢ Zﬁ@cﬁq (where ¢ = 7(f @ w))

n

:Zfi®f(ei)w:(Zf(ei)fi)®wzf®w;

i=1

O fi®e(e)w) = filv)gle
=1 =1
= ¢<Z filw)e:) = o(v).

(Ton)(¢)(v)

6. CHARACTERS

If G is a group, recall that a representation of G over k is a pair (p, V'), where V' is a k-vector space and
p: G — GL(V) is a group homomorphism.

6.1. Basics. We define characters.

Definition 6.1. Let (p,V) be a finite dimensional representation of G. The character of the representation
is the function x, : G — k (or we may also denote it by xv ) defined by

Xp(9) = trp(g).

Notice that we need V' to be finite dimensional for the definition to make sense. (There are various notions
of characters for infinite dimensional representations, but there are more complicated.) From now on, we
assume that the representations are finite dimensional, unless stated otherwise. The following properties are
immediate.

Lemma 6.2. Let (p,V) be a G-representation.

(i) If (p1, V1) and (p2,Va) are equivalent representations, then X,, = Xp,-
(i1) x,(e) = dimV, where e is the identity element of G.
(iii) For every g,h € G, x,(hgh™) = x,(g)-
(iv) Suppose that k = C and g € G has finite order. (This is automatic when G is finite.) Then
Xp(g_l) = m, where denotes complex conjugation.

Proof. (i) By definition, p; and ps are equivalent if there exists a k-linear isomorphism 7' : V; — V5 such that
p1(9) =T 1o pa(g)oT for all g. Since tr(A~1BA) = tr(B) for any linear maps A, B, the claim follows.

(ii) This is clear since p(e) = Idy .

(iii) Since p(hgh™t) = p(h) o p(g) o p(h)~!, this follows again from the invariance of the trace under
conjugation.

(iv) Since C is algebraically closed, p(g) has n eigenvalues (counted with multiplicity), if n = dim V', say
Also A If g™ = e € G, it follows that A" =1 for all . This means that \; are roots of unity and therefore
A1 =X On the other hand, the eigenvalues of p(g7') are A\{*,..., A7t So x,(g7) =S N =3\ =

Xp(g)- O

It is often tedious and confusing to write the homomorphism p as part of the representation. We may
write

g -v in place of p(g)v, g€ G,v eV,
in other words, using the same notation as for group actions.
Suppose that V and W are G-representations (not necessarily finite-dimensional). We may define repre-
sentations of G on:
(1) Ve Wvia g (v,w) z(g v, g-w);
(2) V*via (g- f)(v) = f(g~' - v), where f e V*, veV, geG;
B)VeaWviag-(v@w)= ( v) @ (g-w).
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It is straightforward to check that these are indeed representations. A little more subtle is to define a structure
of G-representation on Homy(V,W). To emphasize the actions, let (p, V') and (u, W) be the corresponding
representations. Then we define a representation v on Homy (V, W) by

(v(9)9)(v) = u(g)d(p(g~")v), or, more simply, (g-¢)(v) =g-d(g~" - v). (6.1)

Proposition 6.3. The k-linear isomorphism 7 : V* @ W — Homy(V, W) from Proposition 5.7 is G-linear,
and therefore V* @ W = Homy(V, W) as G-representations.

Proof. This is a direct verification:
(g (few)(v)=1(g-feg-w) () =(g- ) w)=flg™" v)g-w)
On the other hand, if ¢ = 7(f ® w), then
(g-d)w) =g (g~ -v) =g (flg" v)w) = flg™" - v)(g-w),
where in the last step, we used that f(g~!-v) is a scalar. We see that the two results are the same. O

Lemma 6.4. Suppose that V and W are G-representations. Then for every g € G:

(i) xvew(9) = xv(g9) +xw(9);
(i) xvew(9) = xv(9) - xw(9);
(iii) xv-(g9) =xv(g™").

Proof. Left as exercise. O

6.2. A fixed point formula. We assume from now on that G is finite. Suppose that U is a G-representation.
We define subspace of G-fixed points

C={ucU|g-u=u, forall g€ G}. (6.2)

This is a subrepresentation of U, and in fact it built out of copies of the trivial representation: clearly, for
every u € U%, g-u = for all g.

Proposition 6.5 (Fixed point formula). Suppose that |G| is invertible in k. Then

dimU% = |G| Z xu (g
geG

Proof. Define ¢ : U — U by

o |G|Zg“

geG
Then im C UC because

V() |G|Zg Zg L=y

geG

where ¢’ = hg. On the other hand, if u € U“, then
|G|
¥(u) g- U= U= U.
|G| 29 gz @]

We have seen this trick already in the proof of Maschke’s Theorem. This means that v is a projection of U

onto US. But then .
. G .
dimU" = |G\Zt @ZXU(Q)
geG

O

We denote by Home (V, W) the space of G-linear maps (G-homomorphisms) between the G-representations
V and W. This is a subrepresentation of Homy(V, W), but in fact:

Lemma 6.6. Hom,(V,W)¢ = Homg(V, W).
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Proof. This is simply a matter of unravelling the definitions. A k-linear map ¢ € Homy(V, W) belongs to

Hom, (V, W)% if and only if for every g € G, g- ¢ = ¢. But this means (g - ¢)(v) = ¢(v), or equivalently
g-d(g7tv) =9v), or p(g7-v) =g 1 p(v). Since this condition holds for all g, we may change g for g1,

and hence ¢(g-v) = g - ¢(v) for all g and v. But this is precisely the definition of G-linear maps. O
Corollary 6.7. Let VW be G-representations. Then

dim Homg (V, W) \G\ ZXV Yxw (9)-
geG

Proof. By Lemma 6.6, dim Homg(V, W) = dim Hom,(V, W)%. We apply the fixed point formula to U =
Homy (V, W) and it follows that

dim Homg (V, W) |G| ZXHomk(VW) 9)-
geG

Now, by Proposition 6.3, Homy(V, W) = V* @ W as G-representations and so Xom,(v,w)(9) = xv-ew (9)-
Finally, we have seen that xv-ew(9) = xv+(9)xw(9) = xv (97 1) xw(g). The corollary is proved.
]

6.3. The character pairing. Let Cass(G) denote the k-vector space of class functions, i.e., the functions
f : G — k that are constant on the conjugacy classes of G: f(hgh™') = f(g) for all h,g € G. As noted
before, xy € Cqass(G) for all G-representations V.

Definition 6.8. Define the pairing { , ) on Cdass(G)'
(i fo) = |G| > Ailg™ ).

geG
Lemma 6.9. The pairing (, ) is symmetric and bilinear.
Proof. The bilinearity in f; and fo is clear. The symmetry (f1, f2) = (f2, f1) follows by changing g to g~*
in the summation. U

If C is a conjugacy class in G, we denote by dc the function which is 1 on each element of C, and 0
everywhere else. It is immediate that {0c : C' conjugacy class in G} is a k-basis of Ceass(G).
If g1 and g¢o are conjugate, then so are g; L and 9sy L If C is the conjugacy class of g, denote by C~' the

conjugacy class of g=t. Then |C| = |C*1|. Suppose C' and C” are two conjugacy classes. We calculate
_ 1 c’'nCc!
<5C75C7/ |G| Z 60 ! 5C ( ) |G| Z 1= |C;¢||
geqG geCc'nC—1
O e . (6.3)
_Jien if ' =0,
0, otherwise.

Finally, we have the first important result. Recall that we assume that G is finite, |G| is invertible in k
and the representations are finite dimensional.

Theorem 6.10. Let V,W be G-representations. Then
(xv,xw) = dim Homg(V, W). (6.4)
Proof. This follows immediately now from Corollary 6.7 and the definition of ( , ). O

Corollary 6.11. Suppose V' and W are irreducible G-representations.

(i) If V2 W, then (xv,xw) = 0.
(i) If V.=W and k is algebraically closed, then (xv,xv)=1.

Proof. By the first part of Schur’s Lemma, Homg(V, W) = 0 when V' 2 W. By the second part of Schur’s

Lemma, Endg(V) is one-dimensional when k is algebraically closed. O

Corollary 6.12. Suppose that k is algebraically closed and that |G| is invertible in k. Then the set {xv}
where V' ranges over the irreducible G-representations (up to isomorphism) is an orthonormal basis of Class(G)
with respect to ( , ).
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Proof. By Corollary 6.11, we see that {xy }, where V ranges over the irreducible G-representations (up to iso-
morphism), is an orthonormal set in Cass(G). In particular, it is a linearly independent set. From Maschke’s
Theorem, we know that under the assumptions on k, kG is a (finite-dimensional) semisimple algebra. Hence
by the Artin-Wedderburn Theorem, we know that there are as many irreducible G-representations as there
are conjugacy classes of G. This means that {xy } is a maximal linearly independent set, hence a basis. [

Remark 6.13. Suppose that k = C. Then xv(g~!) = g) as we have seen. Because of this, it is more
customary in this case to define the pairing (, ) in Cdass( by:
(f1, f2) = |G| > filg)
geG

Notice that this doesn’t make any difference for (xv,xw), hence the orthogonality results hold equally well
with this pairing. But it makes a difference for arbitrary class functions f1, fo. More precisely, this form is
not symmetric, but it is hermitian:

(1, f2) = (f2: 1),

as it can be seen immediately. It is not bilinear, but sesquilinear, i.e., conjugate-linear in the first variable,
and linear in the second. But it is positive definite too, which is why we prefer to use it when k = C:

Y 2>07
(f. f |G|Z|f 9P >

geqG

with equality if and only if f = 0.

6.4. Character tables. Assume from now on that k = C. Let {Ci,...,C,} be the conjugacy classes of
G, and {x1,...,Xn} be the characters of inequivalent irreducible G-representations. The inner product on
Caass(G) can be rewritten as:

(o) = 2'|%|'f1< 5(C), (65)

where for f € Cass(G), and C a conjugacy class, f(C) denotes the common value f(g) for g € C. Then the
orthogonality relation that we have just proven says that:

Z ||G Xh Xlz (C ) = 51’171'2' (6'6)

Definition 6.14. The character table of G is the finite square matriz A = (a;;) where a;; = x;(C;).

If we denote by D the diagonal matrix with diagonal entries (d; : j =1,...,n),

O
then the orthogonality of characters can be rewritten as
A-D-A' =1, (6.7)
where [ is the identity matrix.
Lemma 6.15. If B-B* =1, then B - B = 1.
Proof. This is clear since the first relation implies that B! = (B)~1. O

Set B = A - D'/? where D'/? is the diagonal matrix whose diagonal entries are /d;. The equation (6.7)
says that B - Bt = I and hence B' - B = I. Translating back we get D'/2A*AD'/? = I, and therefore

At A=D1 (6.8)
Expressing this in terms of the columns of A we arrive at the second orthogonality relation.
Proposition 6.16. The columns of the character table are orthogonal, more precisely
9L if Gy, = Oy,

Y Xi(Ci)xi(Cr,) = {'C'
i=1 0,

otherwise.
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6.5. Examples. The following situation appears quite often. Let G act on a finite set Q0 and define the
permutation G-representation on k€
g- ZAwwz Zx\w(g~w).

wen wen
Lemma 6.17. The character of a permutation representation is
xka(g) = Q9] g€Ga,
where Q9 ={w e Q| g-w=w}
Proof. By definition ya(g) is the trace of the action of g on k2. But a basis of k{2 is precisely €2, and so the

matrix of the action of g is a permutation matrix with the 1’s on the diagonal coming precisely from Q9. [

Example 6.18. Let Q, = {e1,...,e,} and G = S, acting by usual permutation of indices. Then
Xk, (0) = [{i [ o(i) =4, 1 <i<nj
In particular, recall that CQ,, = C™ decomposes into a direct sum
C™ = St,, & trivy,,

where St,, = {(x1,...,2n) | D x; = 0} is an irreducible (n — 1)-representation and triv, = C{x1 + -+ + x,)
s a copy of the trivial representation. This implies that

xst, (0) = [{i| o(i) =4, 1 <i<n}| -1

As an explicit example of a character table, take G = S3. There are three conjugacy classes with represen-
tatives e, (12), and (123) of sizes 1, 3, and 2, respectively. There are three irreducible representations, triv,
sgn (the sign representation, one dimensional where o acts by the signature of o) and Sto. The character
table is

e ] (12) [ (123)
Xtriv 1 1 1
Xsgn 1 —1 1
Xst, | 2| O -1

One may verify easily that the two orthogonality formulas hold in this case.

Here is a more involved example, namely the character table of S;. We use this calculation as a pretext
to illustrate a couple of useful techniques for determining characters. The first is about tensoring with
one-dimensional representations.

Lemma 6.19. Let V be a G-representation and W be a one-dimensional G-representation. Then

(1) V is irreducible if and only the contragredient representation V* is irreducible;
(2) V@ W is irreducible if and only if V is irreducible.

Proof. Exercise. O

Example 6.20. Let V be an irreducible S, -representation. Then V ® sgn is also irreducible. It may be
possible that V @ sgn = V', we will see this for Sy. In general, one can tell easily from the character table if
that is the case or not: check if Xv - Xsgn 5 equal or not to xv.

For example, we know that xst, ((12)) = n — 3. This means that Xst,@sen((12)) = 3 — n and therefore,
if n > 4, St, ® sgn is an irreducible S, -representation which is nonisomorphic to St, (but of the same
dimension,).

Now, taking G = S, we see that we already know 4 irreducible representations: triv, sgn, Sty and
Sty ® sgn. On the other hand, Sy has 5 conjugacy classes with representatives: e, (12), (123), (12)(34), and
(1234), respectively. By the general theory, we know we are missing one irreducible Sy-representation, call it
U. If n is the dimension of U, since the sum of squares of irreducible representations equals the size of the
group, we see that

24 =12 + 12 + 3% + 3% 4 n?,



INTRODUCTION TO REPRESENTATION THEORY 21

hence n = 2. We can start to fill in the character table, since we know the characters of triv, sgn, but also of
Sty (hence also Sty ® sgn) by Example 6.18, to get

Sy e | (12) | (123) | (12)(34) | (1234)
size 1 6 8 3 6
Xtriv 1 1 1 1 1
Xsgn 1| -1 1 1 -1
XSty 3 1 0 -1 -1

XStiosgn | 0 | —1 0 -1 1

XU 2

The remaning entries in the table can be found by using the the columns are orthogonal . For example,
using the first and second colum: 1-1+1-(—1)+3-1+3-(—1)+2 2 = 0 implies that the unknown entry
is x = 0. The complete table is:

Sy e | (12) | (123) | (12)(34) | (1234)
size 1 6 8 3 6
Xtriv 1 1 1 1 1
Xsgn 1] -1 1 1 -1
XSty 3 1 0 -1 -1

X Sty®sgn 3 —1 0 -1 1

XU 2 0 -1 2 0

To double-check that U is irreducible, we can compute the inner product of xy with itself, it should come
out 1:

1
(xooxv) = 57 (1-22 460 +8-(-1)* +3-2246-0) = L.

We may ask however how one could construct U explicitly as a representation. We get lucky here because
xu((12)(34)) = xu(e) = 2.

Lemma 6.21. Let p : G — GL(V) be a representation, and define N = {g € G | xv(g9) = xv(e)}. Then
N = ker p, in particular, N is normal in G.

Proof. Exercise. O

Whenever N is a normal subgroup of G, so G/N is a group, it is easy to construct (irreducible) represen-
tations of G from (irreducible) representations of G/N. Suppose p: G/N — GL(V) is a representation, and
let 7 : G — G/N be the natural projection homomorphism. Then the composition

p=pony:G— GL(V) (6.9)

is a group homomorphism, hence it is a G representation. Explicitly, p(g) = p(gN) for all ¢ € G. In
particular,

Xp(9) = xz(gN), g€G. (6.10)
Notice that this implies that N C ker p. Moreover, it is easy to see that N = ker p if and only if p is a faithful
G /N-representation, i.e., p is injective. We call p the lift of p.

Lemma 6.22. The lift p is an irreducible G-representation if and only if p is an irreducible G /N -representation.

Proof. Exercise. O

Now, back to the motivating Sy example, setting N = {o € Sy | xv(0) = xv(e) = 2}, we see that
N = {e,(12)(34), (13)(24), (14)(23)}, a normal subgroup of S4. By the discussion above, the representation
pu : Sy — GL(U) is the lift of the representation py : S4/N — GL(U) such that py(o) = pu(cU) for
all 0 € S4. It is easy to check that G/N is naturally isomorhic to Ss3, for example, by considering the
representatives e, (12), (23), (13), (123) and (132) of the left cosets G/N. A neat way to visualize this is
to think of the “essential” labels of a rectangle. Consider a rectangle (not a square) with vertices labelled
by 1,2,3,4. The essential labels of the rectangle are all the possible labels of the rectangle up to rigid
symmetries, i.e., geometric transformations which map the rectangle to itself without twisting its shape. If
we think of the rectangle with (z,y)-coordinates (—2,1), (2,1), (2,—1), and (=2, —1), it is clear that the
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group of rigid symmetries is Co x Cy, where the two generators of Cy x Cs are the reflections in the x-axis
and in the y-axis. If we label a “base” rectangle 1, 2, 3, 4, in the order above, then the permutation (12)(34)
corresponds to the reflection in the y-axis, while (14)(23) to the reflection in the z-axis. Hence the group of
symmetries can be identified with N. But then it follows that the set of essential labels of the rectangle can
be naturally identified with S4/N. On the other hand, fixing the label 4 on the bottom left corner of the
rectangle, we see that all other permutations of 1,2, 3 define different essential labels.

Thus py is a faithful representation of S3, and we know it is 2-dimensional, because U is, hence py must
be the standard representation Sto. In conclusion, U is the lift of Sto.

7. INDUCTION AND RESTRICTION

The discussion at the end of the previous section shows that it is very easy to relate representations of
a group and representation of its quotient groups. But what about the relation with representations of
subgroups? In other words, if H is a subgroup of G, is there a way to construct representations of H from
G and viceversa?

7.1. Restriction. One direction is very easy. Suppose that p : G — GL(V) is a representation of G and
H < G. Then we can restrict the representation p to H, namely, define the H-representation

Res$ V :=plg : H— GL(V), plu(h) = p(h). (7.1)

In particular, it is clear that
XRcsg V(h) = XV(h’)v for all h € H.

In general, if V' is an irreducible G-representation, Resg V' is a reducible H-representation.
Exercise 7.1. Verify, using the character tables that Resg;‘ Sty = Sts @ trivs.

7.2. Induction. On the other hand, to construct representations of G from H-representations is a more
difficult. The best known construction is called induction.

Definition 7.2. If H < G and (u, W) is an H-representation, define the induced representation
mdGW ={f:G— W /| f(zh) = p(h™ ") f(x), for allz € G, h e H}.

In this definition, in the right hand side of the condition, f(x) € W and u(h=') is the action of h=1 on W.
The action of G on Indg W is the left-reqular action

(9-N@)=flg"'x), g€ z€G.
We remark that p(h~1!) rather than p(h) is needed for the condition to make sense. This is so that
f(xhiha) = p(hy ') faha) = plhy u(hi ') f (@) = p((hahe) ™) f (),
which is consistent.
Lemma 7.3. Indg W is indeed a G-representation.

Proof. Let Fun(G) = {f : G — C} be the C-vector space of functions on G. As we have seen before, this is
a representation of G with the left regular action. Hence we only need to check that Indg W is a G-stable
subspace. Let f € Indg W and g € G, then:

(9- F(@h) = flg~ wh) = p(h™") f(g™ x) = p(h™")(g - f)(x),
hence g - f satisfies the defining condition. 0

Example 7.4. Let W be the trivial representation of H. Then mdStriv = {f : G — C | f(zh) =
f(x), forallz € G, h € H} = {f : G/H — C} with the left regular action. But this is nothing by
CG/H as a left representation of G. Hence

Ind$ triv = CG/H.

In particular, Ind%;} triv = CG as a G-representation, where e is the identity element of G.
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To understand the induced representation better, notice that if we choose a set of representative S for the
left cosets G/H, then every f € Ind$ W is uniquely determined by the set {f(s) | s € S}. On the other
hand, we are free to choose f(s) € W, which means that

dimInd% W =[G : H] - dim W, (7.2)

where [G : H] is the index of H in G, i.e., the number of left cosets G/H. We compute now the character of
the induced representation.

Theorem 7.5. The character of Tnd$ W is

_ 1 _
Xawagw(0) = 3 w9 = g D0 (e i) (7.3)
seS zeG
s lgseH z tgreH

Proof. The second equality is easy. This is because every = € G is of the form = = sh for some s € S, h € H,
and gz € H if and only if s~ 'gs € H; moreover yw(z tgr) = xw(h s lgsh) = xw (s lgs) because
xw is an H-character, hence an H-class function.

To prove the first equality®, for every s € S, define

W,={feldSW | f(g)=0forall g¢sH}.

In other words, each Wy consists of functions which are 0 outside the coset sH. In addition, every f € Wy
is uniquely determined by its value f(s), which means that, as a vector space W, = W. Then

Indg W = @ Wy, as vector spaces.
ses
As a side remark, notice that this decomposition is not one of G-representations since Wy is not G-stable;
indeed the action of G is via the left regular representation, so it mixes the left cosets in G/H.
Let us denote by p: G — GL(Inde W) the induced representation homomorphism. Fix g € G. We wish
to compute the trace x,(g) of the linear map p(g) : Indg W — Indg W. If we compute this trace using a
basis of Indg W coming from the concatenation of the bases of the Wy, s € S, then

Xo(9) = xs(9);

ses

where x;(g) is the trace of the diagonal block of p(g) corresponding to Ws. (We are not claiming that p(g)
is block diagonal with respect to the decomposition @, g W, which isn’t true, but, since we compute the
trace, we only need to worry about these pieces of the matrix of p(g).)

If gsH # sH, then p(g) maps W, to W, which different than W, and hence there won’t be any contri-
bution to the trace, i.e., xs(g) = 0.

So assume that gsH = sH, which is equivalent to s 'gs € H. Denote s~ 'gs = h € H. Define

a:Ws =W, aff) = f(s).

This is a linear map, and as already remarked, f is uniquely determined by fs, hence « is the natural
isomorphism between W and W. We wish to see how the action of g on W transforms under this isomorphism
to an action on W. We calculate

alg-f)=(g-f)(s) = flg™"s) = f(sh™") = p(h) f(s) = p(h)a(f).

In other words, the action of g on f corresponds to the action of h = s~'gs on a(f). This implies that
xs(9) = xw(h) = xw (s~ 1gs), hence the first equality in the theorem is proved. O

If we wish to compute the induced character using the character table, then we need to rephrase (7.3) in
terms of conjugacy classes. Firstly, notice that if C' is a conjugacy class in G such that C' N H = (), then the
condition 7 'gx € H is never satisfied for g € C, hence

Xmag w(C) = 0, for all C such that CNH = 0.
On the other hand, suppose that C' N H # (). Then C N H is closed under conjugation by H, so it breaks up

into a disjoint union of H-conjugacy classes C' = U{_, D;.

5T follow the exposition in [2] for this proof.
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Corollary 7.6. If C N H = U{_,D;, then

_ gl ~ |D; ‘

Proof. Fix g € C. Denote by Zg(g) = {z € G| x_lg:r = g} the centralizer of g in G. From (7.3), we know
that

1 - 1 Zc(9)]
Xinag w(€) = > xwlalgr) = Vi > xwy),
zeG yeCNH
z lgzcH

where we made the change y = x !gz, and we had to account for the fact that if 2’ € Zg(g)z, then
(2')~1ga’ =y as well. By the orbit-stabilizer theorem, we have

1Za(g)| = GI/IC].

Finally, it is clear that Z xw(y) = Z |D;|xw (D). O
yeCNH =

Example 7.7. In general, C N H does not equal a single H-conjugacy class. For example, take G = S3,
H = As. Then the conjugacy class C = {(123), (132)} in S3 breaks up into C N Az = {(123)} U {(132)} in
Asz. Of course, Az is abelian, hence every As-conjugacy class is a singleton.

7.3. Frobenius reciprocity. The main relation between induction and restriction is Frobenius reciprocity.
Proposition 7.8. Let H < G be a subgroup, V a G-representation and W an H -representation.

(1) There is a natural linear isomorphism Homg (V,Ind$ W) = Homy (Res$ V, W).
(2) <XVa X1Ind§ W>G = <XResg Vs XW>H

Proof. (1) This is the type of abstract algebra nonsense proof that writes itself(and yet the proof is non-
examinable). Let us denote for simplicity M the space on the left and N the space on the right. We define to
maps ¢ : M — N and ¥ : N — M and prove that they are well defined, linear, and inverses to each other.
The definitions are the only things that make sense naturally.

Firstly, for ® : M — N, for every a € M, set

P(a)(v) =a(v)(e) eW, veV,
where e is the identity element in G. Secondly, for ¥ : N — M, for every S € N, set
V(B (v)(z) =Bz~ -v), veV, z€C.
Check the following steps:

(i) ®(a) is an H-homomorphism:
O(a)(h-v) = a(h-v)(e) = (h-a(v))(e) = a(v)(h'e)
= h-(a(v)(e)) = h- &(a)(v).
(i) W(B)(v) is an element of Ind$; W
(T(B)(v))(wh) = B(h™ ™ v) =h~"- Ba™" - v) = A7 (T(B)(v))(x).
(iii) ¥(pP) is a G-homomorphism:
(T(B)(g v)(@) = Bla™g v) = B((g™"2) ™" - v) = (B(B)(v)) (97" 2) = g (¥(B)(v))(x).

(iv) ®o U =Idy:

(v) Wod =1Idy:
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(2) The character formula follows immediately from (1) just by taking dimensions of M and N.
But we also give another direct proof involving characters. The left hand side equals

\GI > xv(9)xmag w(9) \GI Z > xv(gxw(gx)

geG geG zeG
T lger
1 1 —_— _
= = xv (@~ lgz)xw(z " gz),
G| [H]
g,c€G
a;flgmeH

where we used that v is a class function on G, hence xy(g9) = xv (2 'gz). Now denote x~1gx =
h € H, and write g = zhz~! and change the summation indices from g and x to h and x:

LHS = XV
IGI IHI Z
heH

=\ H\ > xv()xw(h),
heH
which is exactly the RHS.
O

Example 7.9. To illustrate Frobenius reciprocity, take H = {e}, W = triv, the trivial representation of the
trivial group. Then Res{Ge} V = dimV - triv, hence the right hand side of the character form of Frobenius

reciprocity equals dim'V'. On the other hand, as we have seen already Ind?e} triv = CG. Therefore

<Xv, X(CG>G =dimV. (75)
In particular, if V' is irreducible, this says that V appears in CG dimV times:
CG= P @nV)V, (7.6)

V irreducible

which is something that we knew as a consequence of the Artin- Wedderburn Theorem.

7.4. An interesting example. To give a more subtle application of Frobenius reciprocity, let us assume
that H = N is a normal subgroup of G. Recall that S is a set of representatives for G/N (the latter is
also a group now). From the character formula for induced representations (7.3), we have Xy, w(9) =

> sea/n xw(slgs).

silgsEN
Since N is normal, we have s~ 'gs € N if and only if g € N. This means that in this case
ZSESX%V(Q)a lfQGN,
— 7.7
XInd§ w(9) {07 ifgd N, (7.7)

where we define for every s € S,
WiN—=C, xiy(g) =xw(s"'gs), geN.

Lemma 7.10. The function x5, is a class function on N. Moreover, (X3, Xiv)N = (Xw,xw)n. In
particular, if xw is an irreducible character, so is xjy .

Proof. For the first claim, let n € N and g € N. Since N is normal ns = sn’ for some n’ € N. Calculate

X?/V(”_lgn) = xw(s 'n " gns) = XW((nI>_15_193”/>-

Since xw is the character of an N-representation, it is a class function on IV, hence we continue
Xiv(n~tgn) = xw (s gs) = xiy (9)-
This proves that i, is a class function. For the second claim, compute

neN neN
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Make the change n’ = s~'ns € N since N is normal. As n ranges over N so does n’, hence
1 .
(Xt Xw)n = 1 D xw(@)xw () = (xw, xw) -
n’€N

The last claim is immediate since xy is irreducible if and only if (xw, xw)~ = 1 and x§, (1) = xw (1) > 0. O

This means that formula (7.7) can be rewritten in the following more elegant form:
XRes§ IndG (W) = ZX;V' (7.8)
s€s
Proposition 7.11. Let N be a normal subgroup of G and W be an irreducible N -representation. Then
Ind§ W is an irreducible G-representation, if and only if Xy # xw for all s € S\ {e}.
Proof. Apply Frobenius reciprocity:

<XIndg W Xlndlc\:, W>G = <XResg Indg W XW>N7
and then by (7.8)
<XIndg WaXIndg W>G = Z<X1S/V7XW>N =1+ Z <X?/VaXW>N7
ses seS\{e}
where the 1 comes from (xw, xw)n. The claim now follows from Lemma 7.10. g
Example 7.12. (1) Suppose N is a proper normal subgroup of G. Then Ind% triv is always reducible.
This is because when W = triv, all X}, = Xwiv- In fact, the proof of Proposition 7.11 shows that
<X1nd% trive XIndg triv>G = [G : N] (79)
(2) Let N = As in G = S3. Since Az = Cs, there are 3 one-dimensional irreducible As representations
M1, ¢, ez, where ¢ is a primitive 3-root of unity, defined by
pei((123)) = ¢, 0<i<2. (7.10)
By the previous example, Imdff3 w1 is reducible and it is 2-dimensional, hence it must be Indfﬁ3 1 =
trivy @ sgns.
On the other hand, taking S = {e, (12)},
12
e ((123)) = pe((12)(123)(12)) = pe((132)) = pe((123)?) = ¢,
meaning that uém) = pe> and similarly, uélf) = ¢. By Proposition 7.11, both Indi‘z (pei), 1= 1,2,
are irreducible. Since they are both two-dimensional, it follows that

S. ~ S. ~
Ind7? (p1¢) = Ind? (pez) = Sta. (7.11)
We remark, that by Frobenius reciprocity, this implies that
Res Sty = ¢ @ pice. (7.12)

7.5. An example: dihedral groups. The dihedral group Ds,, is the group of symmetries of the regular
n-gon. It is defined in terms of generators and relations as:

Dy, = (r,s|r" =s>=1, srs =r"1). (7.13)

We would like to describe the irreducible complex representations of Ds,,. Firstly, let us determine the conju-
gacy classes. In addition to the trivial element 1, there are two types of elements: rotations (r,r?%,..., 7" 1)
and reflections (s,sr,...,sr" 1), Since sris = r=% = "~ we see that v’ and r"~% are in the same con-
jugacy class. Moreover, s - s’ - s = r's = s7% so sr® and sr~? are in the same conjugacy class. Finally,
r-sri-r~l = sri72 5o sr’ and sr~2 are conjugate. Since s and r generate D, this discussion gives the

following

n—ia

Lemma 7.13. If n is even, there are % + 3 conjugacy classes: {1}, {r',r"~}, 1 < i < 2, {rn/2},
{s,s7% s, ... sr" "2} and {sr,sr,... sr" "1}
If n is odd, there are % + 1 conjugacy classes: {1}, {r*,r" "}, 1 <i < %, and {s,sr,sr?, ... sr" 1}
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Next, we can easily determine the one-dimensional representations. If p : Dy, — C* is a one-dimensional
representation, then we only need to determine the scalars by which r» and s act, since everything else is
determined by them. Suppose that A, and A\g are these scalars. Then because of the relations in Dsy,, the
conditions they need to satisfy are:

M=1, =1, A\ =\""
This means that if n is even, there are four one-dimensional representations given by Ag, A, € {£1}. If n is
odd on the other hand, there are only two one-dimensional representations: A\; € {£1} and A, = 1.
So it remains to determine 4 — 1 irreducible representations when n is even and "T_l irreducible represen-
tations, when n is odd.
Suppose n is even, of dimensions d; > 2, 1 <i < § — 1. Adding the squares of the dimensions, we see

21
Z d? =2n — 4,
i=1
1

which means that d; = 2 for all i. Similarly, we see that also in the odd case, all of the remaining *7=
representations are two dimensional.

To determine these two-dimensional representations, all we need is to remember that D, acts on the
plane as the symmetries of the regular n-gon. Motivated by this, define

0 1 coskf  sink6
pi: Don = GL(2,C), - pr(s) = (1 O) o () = <—sink‘9 cosk0> ’

where § =27 /nand 1 <k <n—1.

Proposition 7.14. The equivalence classes of irreducible representations of Da, are given by the 4 (re-
spectively 2) one-dimensional representations when n is even (respectively odd), and by the two-dimensional
representations py, where 1 < k < L"T_lj

Proof. 1t is easy to check that p, are group homomorphisms, i.e., representations. We only need to check
that the matrices written above satisfy the same relations as s and r. Next, notice that the number of py,

where 1 < k < L%’lj is exactly the number of two dimensional representations that we need to find. This

means that we only need to show that the p; are inequivalent. For that, we look at their characters. In
particular,

Xpr (8) =0,  Xp, (1) = 2coskf.

Since coskf # cos k0 for 1 < k # k' < [251|, we see that the characters are different. O

8. EXTERIOR AND SYMMETRIC POWERS

The construction of exterior and symmetric powers makes sense for vector spaces over an arbitrary field
k. Recall that if V and W are two k-vector spaces, we defined their tensor product V' ® W. The following
lemma is easy to prove using the universal property of the tensor product.
Lemma 8.1. Let U, V,W be k-vector spaces.
(1) The assignment v @ w — w v extends to a k-linear isomorphism Vo W =W V.
(2) The assignment (u@V)@w — u@ (VW) extends to a k-linear isomorphism (URQV )W =2 U(VoW).

Because of the second part of this lemma, we may write V" =V @ V ® --- ® V without ambiguity, and
~—_————

n

call it the n-fold tensor product of V.

Definition 8.2 (Exterior powers). Consider the subspace U of V™ generated by all simple tensors of the
form vy @ vy ® -+ - @ vy, where v; = v; for some i # j. Define the quotient vector space

NV =veru.

Letm: V& — A"V be the projection map, and denote the image of v1@Va®@- - -@uvy, in \"V by v1 AvaA- - Avy,.
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If o is any permutation in .S,,, then
Vo(1) N+ ANVg(n) =5gN(0) V1 A+ Avp. (8.1)

To see this, recall that every permutation is a product of transpositions, so it is sufficient to prove this for a
transposition (i7), i < j. The usual bilinearity trick is

(vi +v;) ® (v +v5) =V QUi —v; @V = v; ®V; +V; @ ;.
Applying 7 to both sides, the left hand side is mapped to 0 and the right hand side gives
v; NV = —vj AN ;.
Suppose {e;} is a basis of V, then
{ei, Neiyy Ao Neg,

i1 <idg <o <ip} (8.2)
is a basis of A\"V. In particular, if dim V' = m, then

. Am (M), ifn<m,
d V=<2rn
1m/\ {07

if n > m.
Definition 8.3 (Symmetric powers). Consider the subspace U’ of VO™ generated by all expressions v1 @vy @
@ Uy = Vg(1) B Vg(2) @+ @ Ug(n), 0 € Sy Define the quotient vector space
Sym"V = Ve /U’
Let ' : VO — Sym"™V be the projection map, and denote the image of v1 @ v @ -+ ® v, in Sym"V by
V1 V2 Up.
By definition, if o is any permutation in S,,, then
VUs(1) *Vo(2) " Vo(n) = V1" V2" Up. (8.3)

A basis of Sym"V is

{eil . 67;2 """ ein | ’il S ig é e S Zn} (84)

If the characteristic of the field k is 0, then we may think of the exterior and symmetric powers as subspaces
of V®", More precisely, define

1
L /\nV — yen, VLA AUy Z sgn(0) Vo(1) ® -+ @ Vg () (8.5)
n oeS,
n n 1
/o Sym"V — VO, v1~~~~vnb—>aZUU(1)®~~®UU(H). (8.6)
g€eSy,

It is easy to see that m ot =1Id on A"V, and similarly 7o/ = Id on Sym"V.

8.1. Representations on symmetric and exterior powers. Specialize again k = C. If V is a G-
representation, then V®" is also a G-representation via

g-(v1®~--®vn)=(g~v1)®---®(g-vn).

It is clear that the subspaces U and U’ used to define the exterior and symmetric powers, respectively, are
subrepresentations, which means that so are the quotients A"V and Sym"V.

Example 8.4. Ifn = 2, then V@ V = Sym?V @& /\2V as C-vector spaces. This is because every simple
tensor can be written as

1 1
vl®v2:5(111®vg+v2®vl)+5(1}1@@2*@2@111),

and the first component is in Sym>V, while the second is in N>V, and Sym?*V 0 A\°V = {0}.
If V is a G-representation, then this decomposition is one of G-representations.

Lemma 8.5. If V is a G-representation, the characters of /\2V and Sym?V are given by:

Xpov(9) = 5 (v (9)” = xv (62),

1

Xsymev (9) = 5 (xv (9)* + xv ().
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Proof. Since xvgv(9) = xv(9)?, it is sufficient to prove one of the formulas. Let p : G — GL(V) be the
representation. Let Aq,..., )\, be the eigenvalues of p(g). Since p(g) is diagonalizable, there exists a basis of
V' given by eigenvectors eq, ..., e,, for these eigenvalues. Then
g-(eine;) =(g-e) A(g-ej) = AiXj(e Aej),
for all ¢ < j. This means that the eigenvalues of the action of g on /\2V are A\j\j, @ < j. So the character is
2xp2v(9) =2 A = QA= D A,
i<j i i
which proves the formula. O

8.2. The character table of S5. To illustrate one use of exterior and symmetric powers, we will use them
to determine the character table of S5. The group S; has 7 conjugacy classes, hence we need to find 7
irreducible characters. We already know 4 of them: the trivial and the sign representations, the standard
representation Sty and its tensor with sgn. So the first 4 lines of the table look like

S5 [e | (12) [(123) [ (1234) [ (12345) [ (12)(34) [ (12)(345)
size | 1| 10 | 20 30 24 15 20
Xew | 1] 1 1 1 1 1 1
Xean | 1| —1 | 1 —1 1 1 —1
Xsta | 4] 2 1 0 —1 0 —1

Xstowean | 4| —2 | 1 0 —1 0 1

We now consider the second exterior and symmetric powers of St5. From Lemma 8.5, we see that the row
of \°Sts is
X/\2St5 = (6a Oa Oa 07 17 _23 0)

Computing the character pairing, we find
1
(XAZsts Xp2s8,) = 15 (36 +24 +15 > 4) = 1,

which means that /\2St5 is irreducible. Note that the explicit values of the character of /\25t5 also tell us
that A’Sts @ sgn = A\Sts.
Now using the sum of squares of the degrees of representations, we find that
120 = 12 4+ 12 + 4% + 4% + 6 + d} + d3, hence d3 + d3 = 50,

where dy and do are the degrees of the missing representations. We know that the only one-dimensional
representations are the trivial and the sign, hence di = dy = 5. Let us denote by W and W’ these two
5-dimensional representations.
The character of Sym?Sts is
Xsymese, = (10,4,1,0,0,2,1).

Computing the character pairing, we find
1
(XSym?Sts » XSym?2Sts) = ﬁ(IOO + 160 + 20 + 60 + 20) = 3.

Hence Sym?St; is the sum of three inequivalent irreducible representations. Indeed, we check easily that

(Xsym2sty» Xeriv) = 1 and (Xsym2st;» Xsts) = 1.

So Sym®St; is the direct sum of the trivial, the standard, and one of the 5-dimensional representations, say
W

Sym®Sts = triv @ Sts @ W.
In particular, the character of W is

xw = (5,1,-1,-1,0,1,1).
Since xwesen = (5,—1,—1,1,0,1,—1) # xw, it follows that W’ = W @ sgn. This completes the character
table.
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Ss e (12) [ (123) [ (1234) [ (12345) | (12)(34) [ (12)(345)
size | 1] 10 | 20 30 24 15 20
Xew 1] 1 1 1 1 1 1
Xegn | 1| —1 | 1 —1 1 1 —1
Xst. | 4] 2 1 0 —1 0 —1
Xstomegn | 4| —2 | 1 0 —1 0 1
Xpzst, | 6] 0O 0 0 1 —2 0
xw |5| 1 | -1 | -1 0 1 1
Xwaosen | 5| —1 | —1 1 0 1 —1

Exercise 8.6. Let S5 denote the set of Sylow 5-subgroups of Ss. The elements of order 5 in S5 are precisely
the 5-cycles and there are 24 of them. This means that |Ss| = 6 and each Sylow 5-subgroup is cyclic. The
group Sy acts by conjugation of Ss. Check that this action is 2-transitive, i.e., if (Hy, Hy) and (H/, H}) are
pairs of Sylow 5-subgroups, then there exists a permutation o € S5 such that o(Hy) = Hi and o(Hs) = H).

From this, deduce that the permutation representation CSs decomposes as the direct sum of the trivial
representation with one irreducible 5-dimensional representations. (Which 5-dimensional?)

9. CHARACTERS AND ALGEBRAIC INTEGERS

In this section, we study more closely the character values of irreducible complex representations of a finite
group G. Suppose p : G — GL(V) is such a representation with character x. Recall that for every g € G,
since g™ = e for some m, the minimal polynomial of p(g) divide ™ — 1, hence the minimal polynomial has
no repeated factors. Therefore, p(g) is diagonalizable and

n

X(g) = trv(g) = >N,

i=1
where \; are the eigenvalues, which are m-th roots of 1. Here n = dim V.
The question we want to answer first is what kind of complex numbers are the \;’s.

9.1. Algebraic integers.

Definition 9.1. An number a € C is called an algebraic integer if a is a root of a monic polynomial
flx) = ™ + ar ™ 4 -+ a1 + a, with integer coefficients. Let A denote the set of all algebraic
integers in C.

Example 9.2. (1) Ewery integer is an algebraic integer. (This is clear: if o € Z, then « is the root of
x—a.)
(2) Every root of 1 is an algebraic integer. (If o is an n-th root of 1, then « is a root of 2™ —1.)

Lemma 9.3. If a is a rational number, then « is an algebraic integer if and only if « € Z. In other words,
ANQ="7Z.

Proof. Suppose o = §, where a and b are coprime integers. If f(§) = 0, we clear denominators and find that
a™ 4+ a1a™ b+ o+ ap_1ab™ T + @™ = 0.

If p is a prime and p divides b, then from this equation, it follows that p divides a™, hence a, and this is a
contradiction unless b = 1. O

We need a criterion to check is a complex number is an algebraic integer.

Proposition 9.4. Let (A,+) be a nonzero finitely generated subgroup of (C,+). If a € C is such that
aA C A, then a € A.

Proof. Since A is a finitely generated torsion-free abelian group,
A=7Zx1 & B ZLxy,
for some x; € C. Consider the map

Mo : A— A, my(a) =a-a.
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The condition €A C A means that the map is well defined. On the other hand, it is clearly a group
homomorphism. For every j, mq(x;) = D1, a;jx;, for some a;; € Z. Let M be the matrix M = (a;;). Then
M is the matrix of m,, with respect to {x1,...,2,}. Let far(z) = 2™ + a12™ * + -+ + ayp_17 + @, be the
characteristic polynomial of M. Since M has integer coefficients, fis(x) is a monic polynomial with integer
coefficients. By the Cayley-Hamilton Theorem

far(mg) =0.

Hence fus(meq)a =0 for all a € A, which means that (o™ +aja™ * + -+ + a1 + ay,) - a = 0. Take a to
be any nonzero element of A, then it follows that « is a root of fjs(x), hence an algebraic integer.

O
Example 9.5. If a is any complex number, then we may form
A=7Za) = {Z aia’ | m € Zsq, a; € Z}.
i=0
One can show easily that Proposition 9.4 implies that
a is an algebraic integer if and only if Z|a] is a finitely generated subgroup of (C,+). (9.1)

The first important result about algebraic numbers is the following

Theorem 9.6. If « and B are algebraic integers, then so are o+ B and af. In other words, (A, +,-) is a
subring of (C,+, ).

Proof. Let a, 8 be algebraic integers with corresponding polynomials p(x) and ¢(z) of degrees n and m,
respectively. Set

Z[O&,ﬁ] = { Z aijozzﬁj I ai; € Z}
0<i<n, 0<j<m
Then (Z]a, 8],4) is a subgroup of (C,+). Notice that in fact Z[«, 3] is in fact a nonzero subring of (C, +, -).
This is because any power of a higher than n can be expressed in terms of lower powers, and similarly for
B. Also Z[a, (] is clearly finitely generated by {a?37}. Since a + 3 and a3 belong to Z[a, 8], we may apply
Proposition 9.4, and deduce that « + 3 and «f are algebraic integers. O

Corollary 9.7. If x is the character of a representation of G, then x(g) € A.
Proof. This is because x(g) is a sum of algebraic integers (roots of 1). O

9.2. Frobenius-Burnside divisibility. To investigate closer the relation between character values and
algebraic integers, we need first a result about the ring structure of the centre Z(CG) of the group algebra
CQ@. Suppose C1, ..., are the conjugacy classes of G. Define

z; = Z g € Z(CQG).

9€C;
As seen before, {z;} form a C-basis of Z(CG).

Lemma 9.8. There exist nonnegative integers p; ;s such that, in Z(CG), we have:

k
Fi = § Hij,s2s
s=1

for every 1 <i,j < k.

Proof. In the proof, we will find a precise formula for the integers p; ;s in fact. Notice that since z; and z;
are in Z(CG), then so is z; - z;. Given that {z;} is a C-basis of Z(CG), it is then automatic that

k
it Zj = E i j,s%s)
s=1

for some complex numbers uéy j.s» S0 the content of the lemma is that these numbers are nonnegative integers.

We calculate
ZitZj = E gh = E Hi,j,z s
geC;, heC; zeG
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where

ui’j,m=|{(g,h) |g€C¢, hGCj, gh:{L‘}EZ.
If z and 2’ are conjugate in G, then j;j, = pi .. This is because if 2/ = yzy~! and = = gh, then
¥ = (ygy~')(yhy~'). So we may denote p; s = i j. for any z € Cs and rewrite the formula as in the
statement of the lemma. 0

Recall that, as a consequence of Schur’s Lemma, if V' is any simple CG-module, every z € Z(CQG) acts by
a scalar A\, € C. If we denote by A; the scalar by which z; acts, then Lemma 9.8 implies

k
/\i/\j = Z,Ui,j,s)\s- (92)
s=1

Lemma 9.9. The numbers \; are algebraic integers.

Proof. Let A denote the abelian subgroup of (C,+) generated by A1,...,\;. Formula (9.2) says that for
every i, A; - A C A. (In fact, a better way is to say that (A, +,-) is a subring of (C,+,+).) The claim follows

by Proposition 9.4. 0
Proposition 9.10. Let C be a conjugacy class of G, g € C, and let x be an irreducible character of G. Then
1Clx(9)

x(e)

18 an algebraic integer.

Proof. This follows from computing A; from before in terms of the characters. Let (p, V') be the irreducible
representation with character x and think of V' as a simple CG-module. Let z; be the central element given
by the sum of elements of our fixed conjugacy class C. Since z; acts by \; - Id on V', we see that

try p(zi) = A dim V.

try p(z;) Ztrvp ZX =[Clx(g).

On the other hand,

zeC zeG
Hence
_ 1CIx(9)
T dimV
and the claim follows from Lemma 9.9. O

Theorem 9.11. Let x be an irreducible character of G. Then x(e) divides |G)|.

Proof. Since x is irreducible, (x, x) = 1, which means

k
1 _
€] Z Cilx(9:)x(g:) = 1,
i=1
where g; is a representative of C;. We rewrite this as

k
Cilx(g:) 4! lap
; o) X =

x(e)
By Proposition 9.10, the left hand side is a sum of products of algebraic integers, hence an algebraic integer.
Thus >|<( ‘) is an algebraic integer. But it is also a rational number, hence an integer. O

While Theorem 9.11 seems at first that it might be useful in getting concrete information about the
irreducible representations of a finite group, in practice this isn’t so much the case. For example, we know
that when G is abelian, then every irreducible representation is one dimensional, so in that case the result
would say that 1 divides |G|. On the other hand, if G = S,,, then |G| = n!, so again we can’t infer much
from the fact that x(e) divides n!. But the interesting thing about Theorem 9.11 is the proof, the fact that
it links algebraic integers to character values in a perhaps surprising way.

Remark 9.12. [t is worth remarking that there exists a refinement of Theorem 9.11, namely that the degree
of every irreducible representation divides the index |G : Z(G)|, where Z(QG) is the centre of G. See [3, Section
6.5, Proposition 17| for a clever proof of this fact.
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9.3. Burnside’s p®¢® Theorem. We begin by recalling the Orbit-Stabiliser Theorem. If G is a group acting
on a set 2, then, for every w € €2, there is a natural bijection

G/Stab(w) +— O, g¢Stab(w) — g-w, (9.3)

where Stab(w) = {g € G | g - w = w} is the stabiliser and O, = {g-w | g € G} is the orbit. In particular, if
we apply this to the action of G on itself given by conjugation, we see that

G/Ca(z)| = [Cal,

where Cg(r) = {g € G | grg~! = 2} is the centraliser of x, and C,, is the conjugacy class of z.
Ig G is a finite p-group, G| = p“, this means that every conjugacy class in G has order equal to a power
of p. Let Cq,...,Cy be the conjugacy classes in G. Then

|C1]| + |Co| +--- +|Ce| = |G
Separate the conjugacy classes into the ones with one element and the ones with more:
YolGl+ Y Gl =1al
|Cil=1 ICj1>1

Notice that an element is its own conjugacy class if and only if it is in the centre Z(G) of G. Using that the
order of every conjugacy class is a power of p, we see that

|Z(G)| =0 (mod p).
Since e € Z(G), this implies that |Z(G)| > p.
Lemma 9.13. A finite p-group G with |G| = p® has a normal subgroup of order p™ for every 0 < m < a.
In particular, o finite p-group is simple if and only if it is isomorphic to Cp.

Proof. The second claim follows directly from the first. The first claim can be proved by induction. Assumes
it is true for all p-groups of order less than p®. Suppose |Z(G)| = p* > p. Since |G/Z(G)| = p>~*, by induction
there exists a normal subgroup N of G/Z(G) of order p™~*. But then NZ(G) is a normal subgroup of G of
order p™. O

The main result® of the subsection is the following

Theorem 9.14 (Burnside). A group G of order p®q®, where p and q are prime numbers, is simple if and
only if G is isomorphic to Cp, or to Cy.

To prove it, we need some preliminary results. Firstly, we need to record some easy facts from Galois
theory. Suppose p is a primitive m-th root of 1. Define Q(u) to be the cyclotomic field generated by p, i.e.,
the subfield of C generated by Q and p. The minimal polynomial of p (the m-th cyclotomic polynomial)
over Q divides ™ — 1, which means in particular that Q(u) is a finite field extension over Q (of degree less
than n). Define the Galois group

Gal(Q(p)/Q) = {0 : Q(n) — Q(p) field isomorphism | o(«) = v, for all a € Q}. (9.4)
This is a group with respect to composition. For every 1 < k < m such that hef(k,m) = 1, define

ok : Q(u) = Qu), ok lo=1d, ox(p) = p*}.

Since o maps p to another primitive m-th root of 1, it is easy to see that

o, € Gal(Q(p)/Q) and oy 0 0y = opg.
In fact, it isn’t difficult to prove the following

Proposition 9.15. Gal(Q(n)/Q) = {ox | 1 < k < m, hcf(k,m) = 1} = ((Z/mZ)*,-). Moreover, if
a € Q(u) is such that o(a) = « for all o € Gal(Q(u)/Q), then a € Q.

Now we can prove a lemma about the average of roots of unity.

6The proof of the theorem is not examinable
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Lemma 9.16. If \1,...,\, are roots of unity such that their average
M+ A,
@=———
n
1s an algebraic integer, then either a =0 or A\ = Xy =--- = \,,.

Proof. Without loss of generality, we may assume that all \; are m-th roots of 1. Let u be a primitive m-th
root of 1, as before. Then \; € Q(u) for all . Define

o= H o(a) € Q(u).
o€Gal(Q(1)/Q)

It is clear from the definition that o(«) = « for all o € Gal(Q(p)/Q), which by Proposition 9.15, means that
a€Q.

On the other hand, every o € Gal(Q(u)/Q) maps roots of unity to roots of unity, hence o(«) is an algebraic
number (because « is) for all o. Hence « is an algebraic number and a rational number, so it is an integer.

Finally, |a| < 1, which means that |o(a)| < 1 for all . Thus |a| < 1 and « is an integer. There are two
cases: if a = 0, then one of the o(a) = 0, but then a = 0, as well. Or, if |a| = 1, we must have |o(a)| =1 for
all o, so |a| = 1. But this implies that Ay = --- = A,,. O

This lemma can be rephrased as follows.

Lemma 9.17. Let x be the character of a representation p : G — GL(V') of a finite group G. Suppose g € G

1s such that % is an algebraic integer. Then one of the following holds:

(1) either x(g) =0,
(2) or p(g) is a scalar multiple of the identity in GL(V).
In particular, suppose that G is a nonabelian simple group, g # e, and x is an irreducible nontrivial character.

If igg; is an algebraic integer, then x(g) = 0.

Proof. If A1,..., )\, are the eigenvalues of p(g), then we see that the condition is just the same as in the
previous lemma: 2F2FA2 s an algebraic integer. The two cases are exactly the ones from before.

For the second part, we need to show that p(g) can’t be a multiple of the identity. Suppose it is, e.g.,
p(g) = Ady for some A € C. By assumption, p is an irreducible nontrivial G-representation. Since G is a
simple group, p must be faithful, and therefore, by the first isomorphism theorem, p(G) = G. This means
that p(G) is a simple group too. But p(g) is a central element of p(G), which means that p(G) must be

abelian simple group (cyclic of prime order), and this is a contradiction with the assumption. 0

Proposition 9.18. Let G be a nonabelian simple group and let C' be a conjugacy class in G, C # {e}. Then
|C| is not a prime power.

Proof. Suppose |C| = ¢* for some prime number ¢ and k € Z>o. Fix a representative g € C. Using the
column orthogonality of characters, g # e,

> x(g)x(e) =0,
x€lrr G
which implies
1+ > x(gxle) =0, (9.5)
XETrr G\{Xu }

We claim that for every x # Xy, €ither ¢ | x(e) or x(¢g) = 0. Suppose ¢ does not divide x(e). Then
hef(|C|, x(e)) = 1, since |C| = ¢*. So there exist integers a,b € Z such that a|C| + bx(e) = 1. Multiply by
% and get

C

| m@>+b<):x@)

x(e) x(e)

All the elements in the left hand side are algebraic integers (the difficult bit was done in Proposition 9.10),

hence % is also an algebraic integer. By Lemma 9.17, it follows that x(g) = 0, so the claim is proved.

a
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Returning to (9.5), taking mod ¢, we now see that we may write erhr G\ {xew} x(g9)x(e) = qa for some

algebraic integer a. But then % = —a is an algebraic integer and this is a contradiction, since * is rational
but not an integer.

O

We can now finally prove Theorem 9.14.

Proof of Theorem 9.14. If a = 0 (or b = 0), then Lemma 9.13 gives the statement in the theorem. Suppose

a >1and b > 1. Applying Sylow’s Theorem, we see that G has a Sylow subgroup H of order p* > 1. By

Lemma 9.13 again, Z(H) # {e}. Let g € Z(H) be an element, g # e. Let C be the conjugacy class of g in G.
Since g € Z(H), we have H C Cg(H). But then

|G : H|[=|G: Calg)| - |Calg) : HI.
Since |G : H| = ¢® and |C| = |G : Cg(g)|, we have that the order of C is a power of ¢. But this is a
contradiction with Proposition 9.18. 0
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