9. Interpretations and Assignments

We refer to a subset $\mathcal{L} \subseteq \mathcal{L}^{FOPC}$ containing all the logical symbols, but possibly only some non-logical as a **language** (or **first-order lan-guage**).

9.1 Definition Let \mathcal{L} be a language. An **interpretation** of \mathcal{L} is an \mathcal{L} -structure \mathcal{A} :=

 $< A; (f_{\mathcal{A}})_{f \in \mathsf{Fct}(\mathcal{L})}; (P_{\mathcal{A}})_{P \in \mathsf{Pred}(\mathcal{L})}; (c_{\mathcal{A}})_{c \in \mathsf{Const}(\mathcal{L})} >,$ i.e.

- A is a non-empty set, the **domain** of \mathcal{A} ,
- for each k-ary function symbol $f=f_n^{(k)}\in\mathcal{L}$, $f_{\mathcal{A}}:\,A^k\to A$ is a function
- for each k-ary predicate symbol $P=P_n^{(k)}\in\mathcal{L}$, $P_{\mathcal{A}}$ is a k-ary relation on A, i.e. $P_{\mathcal{A}}\subseteq A^k$ (write $P_{\mathcal{A}}(a_1,\ldots,a_k)$ for $(a_1,\ldots,a_k)\in P_{\mathcal{A}}$)
- for each $c \in Const(\mathcal{L})$: $c_{\mathcal{A}} \in A$.

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A} = < A; ... >$ be an \mathcal{L} -structure.

(1) An assignment in A is a function

$$v:\{x_0,x_1,\ldots\}\to A$$

(2) v determines an assignment

$$\widetilde{v} = \widetilde{v}_{\mathcal{A}} : \mathsf{Terms}(\mathcal{L}) \to A$$

defined recursively as follows:

- (i) $\tilde{v}(x_i) = v(x_i)$ for all i = 0, 1, ...
- (ii) $\tilde{v}(c) = c_{\mathcal{A}}$ for each $c \in \mathsf{Const}(\mathcal{L})$
- (iii) $\tilde{v}(f(t_1,\ldots,t_k))=f_{\mathcal{A}}(\tilde{v}(t_1),\ldots,\tilde{v}(t_k))$ for each $f=f_n^{(k)}\in \mathsf{Fct}(\mathcal{L})$, where the $\tilde{v}(t_i)$ are already defined.
- (3) v determines a valuation

$$\widetilde{v} = \widetilde{v}_{\mathcal{A}} : \mathsf{Form}(\mathcal{L}) \to \{T, F\}$$

as follows:

- (i) for atomic formulas $\phi \in \text{Form}(\mathcal{L})$:
- for each $P=P_n^{(k)}\in \operatorname{Pred}(\mathcal{L})$ and for all $t\in \operatorname{Term}(\mathcal{L})$

$$\widetilde{v}(P(t_1,\ldots,t_k)) = \begin{cases} T & \text{if } P_{\mathcal{A}}(\widetilde{v}(t_1),\ldots,\widetilde{v}(t_k)) \\ F & \text{otherwise} \end{cases}$$

- for all $t_1, t_2 \in \text{Term}(\mathcal{L})$:

$$\widetilde{v}(t_1 \doteq t_2) = \begin{cases} T & \text{if } \widetilde{v}(t_1) = \widetilde{v}(t_2) \\ F & \text{otherwise} \end{cases}$$

- (ii) for arbitrary formulas $\phi \in \text{Form}(\mathcal{L})$ recursively:
- $\widetilde{v}(\neg \psi) = T$ iff $\widetilde{v}(\psi) = F$
- $\tilde{v}(\psi \to \chi) = T$ iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$
- $\tilde{v}(\forall x_i \psi) = T$ iff $\tilde{v}^*(\psi) = T$ for all assignments v^* agreeing with v except possibly at x_i .

Notation: Write $\mathcal{A} \models \phi[v]$ for $\tilde{v}_{\mathcal{A}}(\phi) = T$, and say ' ϕ is true in \mathcal{A} under the assignment $v = v_{\mathcal{A}}$.'

Lecture 9 - 3/8

9.3 Some abbreviations

We use ...as abbreviation for ...
$$(\alpha \lor \beta)$$
 $((\alpha \to \beta) \to \beta)$ $(\alpha \land \beta)$ $\neg(\neg \alpha \lor \neg \beta)$ $(\alpha \leftrightarrow \beta)$ $((\alpha \to \beta) \land (\beta \to \alpha))$ $\exists x_i \phi$ $\neg \forall x_i \neg \phi$

9.4 Lemma

For any $\mathcal{L}\text{-structure }\mathcal{A}$ and any assignment v in \mathcal{A} one has

$$\mathcal{A} \models (\alpha \lor \beta)[v] \quad \text{iff} \quad \mathcal{A} \models \alpha[v] \text{ or } \mathcal{A} \models \beta[v]$$

$$\mathcal{A} \models (\alpha \land \beta)[v] \quad \text{iff} \quad \mathcal{A} \models \alpha[v] \text{ and } \mathcal{A} \models \beta[v]$$

$$\mathcal{A} \models (\alpha \leftrightarrow \beta)[v] \quad \text{iff} \quad \tilde{v}(\alpha) = \tilde{v}(\beta)$$

$$\mathcal{A} \models \exists x_i \phi[v] \quad \text{iff} \quad \text{for some assignment}$$

$$v^* \text{ agreeing with } v$$

$$\text{except possibly at } x_i$$

$$\mathcal{A} \models \phi[v^*]$$

Proof: easy

9.5 Example

Let f be a binary function symbol, let ' $\mathcal{L} = \{f\}$ ' (need only list non-logical symbols), consider $\mathcal{A} = <\mathbf{Z}; \cdot>$ as \mathcal{L} -structure, let v be the assignment $v(x_i)=i(\in\mathbf{Z})$ for $i=0,1,\ldots$, and let

$$\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$$

Then

$$\mathcal{A} \models \phi[v]$$

iff for all v^* with $v^*(x_i) = i$ for $i \neq 0$ $\mathcal{A} \models \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^*]$

iff for all $v^{\star\star}$ with $v^{\star\star}(x_i) = i$ for $i \neq 0, 1$ $\mathcal{A} \models (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)[v^{\star\star}]$

iff for all $v^{\star\star}$ with $v^{\star\star}(x_i) = i$ for $i \neq 0, 1$ $v^{\star\star}(x_0) \cdot v^{\star\star}(x_2) = v^{\star\star}(x_1) \cdot v^{\star\star}(x_2)$ implies $v^{\star\star}(x_0) = v^{\star\star}(x_1)$

iff for all $a, b \in \mathbb{Z}$, $a \cdot 2 = b \cdot 2$ implies a = b, which is true.

So $\mathcal{A} \models \phi[v]$

However, if $v'(x_i) = 0$ for all i, then would have finished with

... iff for all $a, b \in \mathbb{Z}$, $a \cdot 0 = b \cdot 0$ implies a = b, which is false. So $\mathcal{A} \not\models \phi[v']$.

9.6 Example

Let P be a unary predicate symbol, $\mathcal{L} = \{P\}$, \mathcal{A} an \mathcal{L} -structure, v any assignment in \mathcal{A} , and $\phi = ((\forall x_0 P(x_0) \rightarrow P(x_1)).$

Then $\mathcal{A} \models \phi[v]$.

Proof:

 $\mathcal{A} \models \phi[v]$ iff

 $\mathcal{A} \models \forall x_0 P(x_0)[v] \text{ implies } \mathcal{A} \models P(x_1)[v].$

Now suppose $A \models \forall x_0 P(x_0)[v]$. Then for all v^* which agree with v except possibly at x_0 , $P(x_0)[v^*]$.

In particular, for $v^{\star}(x_i) = \begin{cases} v(x_i) & \text{if } i \neq 0 \\ v(x_1) & \text{if } i = 0 \end{cases}$ we have $P_{\mathcal{A}}(v^{\star}(x_0))$, and hence $P_{\mathcal{A}}(v(x_1))$, i.e. $P(x_1)[v]$.

Lecture 9 - 6/8

9.7 Definition

Let \mathcal{L} be any first-order language.

- An \mathcal{L} -formula ϕ is **logically valid** (' $\models \phi$ ') if $\mathcal{A} \models \phi[v]$ for all \mathcal{L} -structures \mathcal{A} and for all assignments v in \mathcal{A} .
- $\phi \in \text{Form}(\mathcal{L})$ is **satisfiable** if $\mathcal{A} \models \phi[v]$ for some \mathcal{L} -structure \mathcal{A} and for some assignment v in \mathcal{A} .
- For $\Gamma \subseteq \operatorname{Form}(\mathcal{L})$ and $\phi \in \operatorname{Form}(\mathcal{L})$, ϕ is a **logical consequence** of Γ (' $\Gamma \models \phi$ ') if for all \mathcal{L} -structures \mathcal{A} and for all assignments v in \mathcal{A} with $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$, also $\mathcal{A} \models \phi[v]$.
- $\phi, \psi \in \text{Form}(\mathcal{L})$ are **logically equivalent** if $\{\phi\} \models \psi \text{ and } \{\psi\} \models \phi.$

Example: $\models \phi$ for ϕ from 9.6

Note:

The symbol $'\models$ ' is now used in two ways:

 $\Gamma \models \phi - \phi$ is a logical consequence of Γ

 $\mathcal{A} \models \phi[v] - \phi$ is satisfied in the \mathcal{L} -structure \mathcal{A} under the assignment v

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L} -formulas or an \mathcal{L} -structure \mathcal{A} in front of ' \models '.