9. Interpretations and Assignments

We refer to a subset $\mathcal{L} \subseteq \mathcal{L}^{F O P C}$ containing all the logical symbols, but possibly only some non-logical as a language (or first-order language).
9.1 Definition Let \mathcal{L} be a language. An interpretation of \mathcal{L} is an \mathcal{L}-structure $\mathcal{A}:=$
$\left\langle A ;\left(f_{\mathcal{A}}\right)_{f \in \operatorname{Fct}(\mathcal{L})} ;\left(P_{\mathcal{A}}\right)_{P \in \operatorname{Pred}(\mathcal{L})} ;\left(c_{\mathcal{A}}\right)_{c \in \operatorname{Const}(\mathcal{L})}\right\rangle$, i.e.

- A is a non-empty set, the domain of \mathcal{A},
- for each k-ary function symbol $f=f_{n}^{(k)} \in \mathcal{L}$, $f_{\mathcal{A}}: A^{k} \rightarrow A$ is a function
- for each k-ary predicate symbol $P=P_{n}^{(k)} \in \mathcal{L}$, $P_{\mathcal{A}}$ is a k-ary relation on A, i.e. $P_{\mathcal{A}} \subseteq A^{k}$ (write $P_{\mathcal{A}}\left(a_{1}, \ldots, a_{k}\right)$ for $\left.\left(a_{1}, \ldots, a_{k}\right) \in P_{\mathcal{A}}\right)$
- for each $c \in \operatorname{Const}(\mathcal{L}): c_{\mathcal{A}} \in A$.

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A}=\langle A ; \ldots\rangle$ be an \mathcal{L}-structure.
(1) An assignment in \mathcal{A} is a function

$$
v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A
$$

(2) v determines an assignment

$$
\tilde{v}=\widetilde{v}_{\mathcal{A}}: \operatorname{Terms}(\mathcal{L}) \rightarrow A
$$

defined recursively as follows:
(i) $\widetilde{v}\left(x_{i}\right)=v\left(x_{i}\right)$ for all $i=0,1, \ldots$
(ii) $\widetilde{v}(c)=c_{\mathcal{A}}$ for each $c \in \operatorname{Const}(\mathcal{L})$
(iii) $\widetilde{v}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=f_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right)$ for each $f=f_{n}^{(k)} \in \operatorname{Fct}(\mathcal{L})$, where the $\widetilde{v}\left(t_{i}\right)$ are already defined.
(3) v determines a valuation

$$
\tilde{v}=\widetilde{v}_{\mathcal{A}}: \operatorname{Form}(\mathcal{L}) \rightarrow\{T, F\}
$$

as follows:
(i) for atomic formulas $\phi \in \operatorname{Form}(\mathcal{L})$:

- for each $P=P_{n}^{(k)} \in \operatorname{Pred}(\mathcal{L})$ and for all $t \in$ $\operatorname{Term}(\mathcal{L})$

$$
\widetilde{v}\left(P\left(t_{1}, \ldots, t_{k}\right)\right)= \begin{cases}T & \text { if } P_{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) \\ F & \text { otherwise }\end{cases}
$$

- for all $t_{1}, t_{2} \in \operatorname{Term}(\mathcal{L})$:

$$
\widetilde{v}\left(t_{1} \doteq t_{2}\right)= \begin{cases}T & \text { if } \widetilde{v}\left(t_{1}\right)=\widetilde{v}\left(t_{2}\right) \\ F & \text { otherwise }\end{cases}
$$

(ii) for arbitrary formulas $\phi \in \operatorname{Form}(\mathcal{L})$ recursively:

- $\widetilde{v}(\neg \psi)=T$ iff $\widetilde{v}(\psi)=F$
- $\widetilde{v}(\psi \rightarrow \chi)=T$ iff $\widetilde{v}(\psi)=F$ or $\widetilde{v}(\chi)=T$
- $\widetilde{v}\left(\forall x_{i} \psi\right)=T$ iff $\widetilde{v}^{\star}(\psi)=T$ for all assignments
v^{\star} agreeing with v except possibly at x_{i}.

Notation: Write $\mathcal{A} \vDash \phi[v]$ for $\widetilde{v}_{\mathcal{A}}(\phi)=T$, and say ' ϕ is true in \mathcal{A} under the assignment $v=v_{\mathcal{A}}$.

9.3 Some abbreviations

We use \ldots	as abbreviation for \ldots
$(\alpha \vee \beta)$	$((\alpha \rightarrow \beta) \rightarrow \beta)$
$(\alpha \wedge \beta)$	$\neg(\neg \alpha \vee \neg \beta)$
$(\alpha \leftrightarrow \beta)$	$((\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha))$
$\exists x_{i} \phi$	$\neg \forall x_{i} \neg \phi$

9.4 Lemma

For any \mathcal{L}-structure \mathcal{A} and any assignment v in \mathcal{A} one has

$$
\begin{array}{rll}
\mathcal{A} \models(\alpha \vee \beta)[v] & \text { iff } & \mathcal{A} \models \alpha[v] \text { or } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \wedge \beta)[v] & \text { iff } & \mathcal{A}=\alpha[v] \text { and } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \leftrightarrow \beta)[v] & \text { iff } & \widetilde{v}(\alpha)=\widetilde{v}(\beta) \\
\mathcal{A} \models \exists x_{i} \phi[v] & \text { iff } & \text { for some assignment } \\
& v^{\star} \text { agreeing with } v \\
& \text { except possibly at } x_{i} \\
& \mathcal{A} \models \phi\left[v^{\star}\right]
\end{array}
$$

Proof: easy

9.5 Example

Let f be a binary function symbol, let ' $\mathcal{L}=\{f\}^{\prime}$ (need only list non-logical symbols), consider $\mathcal{A}=<\mathbf{Z} ; \cdot>$ as \mathcal{L}-structure, let v be the assignment $v\left(x_{i}\right)=i(\in \mathbf{Z})$ for $i=0,1, \ldots$, and let

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

Then

$$
\mathcal{A} \models \phi[v]
$$

iff for all v^{\star} with $v^{\star}\left(x_{i}\right)=i$ for $i \neq 0$
$\mathcal{A} \models \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star}\right]$
iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$ $\mathcal{A} \models\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star \star}\right]$
iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$ $v^{\star \star}\left(x_{0}\right) \cdot v^{\star \star}\left(x_{2}\right)=v^{\star \star}\left(x_{1}\right) \cdot v^{\star \star}\left(x_{2}\right)$ implies $v^{\star \star}\left(x_{0}\right)=v^{\star \star}\left(x_{1}\right)$
iff for all $a, b \in \mathbf{Z}, a \cdot 2=b \cdot 2$ implies $a=b$, which is true.

So $\mathcal{A} \models \phi[v]$

However, if $v^{\prime}\left(x_{i}\right)=0$ for all i, then would have finished with
\ldots iff for all $a, b \in \mathbf{Z}, a \cdot 0=b \cdot 0$ implies $a=b$, which is false. So $\mathcal{A} \not \vDash \phi\left[v^{\prime}\right]$.

9.6 Example

Let P be a unary predicate symbol, $\mathcal{L}=\{P\}$, \mathcal{A} an \mathcal{L}-structure, v any assignment in \mathcal{A}, and

$$
\phi=\left(\left(\forall x_{0} P\left(x_{0}\right) \rightarrow P\left(x_{1}\right)\right) .\right.
$$

Then $\mathcal{A} \models \phi[v]$.
Proof:
$\mathcal{A} \models \phi[v]$ iff
$\mathcal{A} \models \forall x_{0} P\left(x_{0}\right)[v]$ implies $\mathcal{A} \models P\left(x_{1}\right)[v]$.
Now suppose $\mathcal{A} \vDash \forall x_{0} P\left(x_{0}\right)[v]$. Then for all v^{\star} which agree with v except possibly at x_{0}, $P\left(x_{0}\right)\left[v^{\star}\right]$.
In particular, for $v^{\star}\left(x_{i}\right)= \begin{cases}v\left(x_{i}\right) & \text { if } i \neq 0 \\ v\left(x_{1}\right) & \text { if } i=0\end{cases}$ we have $P_{\mathcal{A}}\left(v^{\star}\left(x_{0}\right)\right)$, and hence $P_{\mathcal{A}}\left(v\left(x_{1}\right)\right)$, i.e. $P\left(x_{1}\right)[v]$.

9.7 Definition

Let \mathcal{L} be any first-order language.

- An \mathcal{L}-formula ϕ is logically valid (' $\models \phi^{\prime}$) if $\mathcal{A} \models \phi[v]$ for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A}.
- $\phi \in \operatorname{Form}(\mathcal{L})$ is satisfiable if $\mathcal{A} \models \phi[v]$ for some \mathcal{L}-structure \mathcal{A} and for some assignment v in \mathcal{A}.
- For $\Gamma \subseteq \operatorname{Form}(\mathcal{L})$ and $\phi \in \operatorname{Form}(\mathcal{L}), \phi$ is a logical consequence of Γ (' $\Gamma \vDash \phi$ ') if for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A} with $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma^{\text {, also }}$ $\mathcal{A} \vDash \phi[v]$.
- $\phi, \psi \in \operatorname{Form}(\mathcal{L})$ are logically equivalent if $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Example: $\models \phi$ for ϕ from 9.6

Note:

The symbol ' \equiv ' is now used in two ways:
$\Gamma \models \phi-\phi$ is a logical consequence of Γ
$\mathcal{A} \vDash \phi[v]-\phi$ is satisfied in the \mathcal{L}-structure \mathcal{A} under the assignment v

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L}-formulas or an \mathcal{L}-structure \mathcal{A} in front of ' \equiv '.

