10. Free and bound variables

Recall Example 9.5: The formula

 $\phi = \forall x_0 \forall x_1 (f(x_0, x_2) \doteq f(x_1, x_2) \rightarrow x_0 \doteq x_1)$

- is true in $\langle \mathbf{Z}; \cdot \rangle$ under any assignment vwith $v(x_2) = 2$
- but false when $v(x_2) = 0$.

Whether or not $\mathcal{A} \models \phi[v]$ only depends on $v(x_2)$, not on $v(x_0)$ or $v(x_1)$.

say: the occurrence of x_2 in ϕ is **free**.

Lecture 10 - 1/9

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L} -formula, and $x \in \{x_0, x_1, \ldots\}$ a variable occurring in ϕ .

The occurrence of x in ϕ is **free**, if (i) ϕ is atomic, or (ii) $\phi = \neg \psi$ resp. $\phi = (\chi \rightarrow \rho)$ and x occurs free in ψ resp. in χ or ρ , or (iii) $\phi = \forall x_i \psi$, x occurs free in ψ , and $x \neq x_i$.

Every other occurrence of x in ϕ is called **bound**.

In particular, if $x = x_i$ and $\phi = \forall x_i \psi$, then x is bound in ϕ .

10.2 Example

 $(\exists x_0 P(\underbrace{x_0}_{b}, \underbrace{x_1}_{f}) \lor \forall x_1 (P(\underbrace{x_0}_{f}, \underbrace{x_1}_{b}) \to \exists x_0 P(\underbrace{x_0}_{b}, \underbrace{x_1}_{b})))$

Lecture 10 - 2/9

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L} -structure, let v, v' be assignments in \mathcal{A} and let ϕ be an \mathcal{L} -formula.

Suppose $v(x_i) = v'(x_i)$ for every variable x_i with a free occurrence in ϕ .

Then

$$\mathcal{A} \models \phi[v]$$
 iff $\mathcal{A} \models \phi[v']$.

Proof:

For ϕ atomic: exercise

Now use induction on the length of ϕ : - $\phi = \neg \psi$ and $\phi = (\chi \rightarrow \rho)$: easy - $\phi = \forall x_i \psi$:

IH: Assume the Lemma holds for ψ .

Let Free $(\phi):=\{x_j \mid x_j \text{ occurs free in } \phi\}$ Free $(\psi):=\{x_j \mid x_j \text{ occurs free in } \psi\}$

Lecture 10 - 3/9

 $\Rightarrow x_i \notin \operatorname{Free}(\phi)$ and

$$\mathsf{Free}(\phi) = \mathsf{Free}(\psi) \setminus \{x_i\}$$

Assume $\mathcal{A} \models \forall x_i \psi[v]$ (*) to show: for any v^* agreeing with v' except possibly at x_i : $\mathcal{A} \models \psi[v^*]$.

for all $x_j \in \operatorname{Free}(\phi)$:

$$v^{\star}(x_j) = v(x_j) = v'(x_j).$$

Let $v^+(x_j) := \begin{cases} v(x_j) & \text{if } j \neq i \\ v^*(x_j) & \text{if } j = i \end{cases}$

Then v^+ agrees with v except possibly at x_i .

Hence, by (*), $\mathcal{A} \models \psi[v^+]$.

But $v^{\star}(x_j) = v^+(x_j)$ for all $x_j \in \operatorname{Free}(\psi)$.

 \Rightarrow by IH, $\mathcal{A} \models \psi[v^*]$

Lecture 10 - 4/9

10.4 Corollary

Let \mathcal{L} be a language, $\alpha, \beta \in Form(\mathcal{L})$. Assume the variable x_i has no free occurrence in α . Then

$$\models (\forall x_i(\alpha \to \beta) \to (\alpha \to \forall x_i\beta)).$$

Proof:

Let \mathcal{A} be an \mathcal{L} -structure and let v be an assignment in \mathcal{A} such that $\mathcal{A} \models \forall x_i (\alpha \to \beta)[v]$ (*)

to show:
$$\mathcal{A} \models (\alpha \rightarrow \forall x_i \beta)[v]$$
.

So suppose $\mathcal{A} \models \alpha[v]$ to show: $\mathcal{A} \models \forall x_i \beta[v]$.

So let v^* be an assignment agreeing with vexcept possibly at x_i . We want: $\mathcal{A} \models \beta[v^*]$

$$\begin{array}{l} x_i \text{ is } not \text{ free in } \alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha[v^*] \\ (\star) \Rightarrow \mathcal{A} \models (\alpha \rightarrow \beta)[v^*] \\ \Rightarrow \mathcal{A} \models \beta[v^*] \end{array}$$

Lecture 10 - 5/9

10.5 Definition

A formula ϕ without free (occurrence of) variables is called a **statement** or a **sentence**.

So for any \mathcal{L} -structure \mathcal{A} and any assignment vin \mathcal{A} , whether or not $\mathcal{A} \models \phi[v]$ does not depend on v.

So we write $\mathcal{A} \models \phi$ if $\mathcal{A} \models \phi[v]$ for some/all v.

Say: ϕ is **true** in \mathcal{A} , or \mathcal{A} is a **model** of ϕ .

(→ 'Model Theory')

10.6 Example

Let $\mathcal{L} = \{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (we write x, y, z instead of x_0, x_1, x_2)

$$\phi_1 : \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \phi_2 : \forall x \exists y (f(x, y) \doteq c \land f(y, x) \doteq c) \phi_3 : \forall x (f(x, c) \doteq x \land f(c, x) \doteq x)$$

and let $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3$.

Let $\mathcal{A} = \langle A; \circ; e \rangle$ be an \mathcal{L} -structure (i.e. \circ is an interpretation of f, and e is an interpretation of c.)

Then $\mathcal{A} \models \phi$ iff \mathcal{A} is a group.

Lecture 10 - 7/9

10.7 Example

Let $\mathcal{L} = \{E\}$ be a language with $E = P_i^{(2)}$ a binary relation symbol. Consider

$$\begin{array}{ll} \chi_{1} : & \forall x E(x,x) \\ \chi_{2} : & \forall x \forall y (E(x,y) \leftrightarrow E(y,x)) \\ \chi_{3} : & \forall x \forall y \forall z (E(x,y) \rightarrow (E(y,z) \rightarrow E(x,z))) \end{array}$$

Then for any \mathcal{L} -structure $< A; R >:$
 $< A; R > \models (\chi_{1} \land \chi_{2} \land \chi_{3})$ iff

R is an equivalence relation on A.

Note: Most mathematical concepts can be captured by first-order formulas.

10.8 Example

Let P be a 2-place (i.e. binary) predicate symbol, $\mathcal{L} := \{P\}$. Consider the statements

$$\psi_{1}: \forall x \forall y (P(x,y) \lor x \doteq y \lor P(y,x))$$

(\forall means either - or exclusively:
$$(\alpha \lor \beta): \Leftrightarrow ((\alpha \lor \beta) \land \neg (\alpha \land \beta)))$$

- ψ_2 : $\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$
- $\psi_{\mathbf{3}}: \quad \forall x \forall z (P(x,z) \to \exists y (P(x,y) \land P(y,z)))$

$$\psi_{4}: \forall y \exists x \exists z (P(x,y) \land P(y,z))$$

These are the axioms for a **dense linear order** without endpoints. Let $\psi = (\psi_1 \land \ldots \land \psi_4)$. Then $\langle \mathbf{Q}; \langle \rangle \models \psi$ and $\langle \mathbf{R}; \langle \rangle \models \psi$.

But: 'Completeness' of $< \mathbf{R}; <>$ is not captured in 1st-order terms using the langauge \mathcal{L} , but rather in 2nd-order terms, where also quantification over *subsets*, rather than only over *elements* of \mathbf{R} is used:

 $\forall A, B \subseteq \mathbf{R}((A \ll B) \rightarrow \exists c \in \mathbf{R}(A \leq \{c\} \leq B)),$ where $A \ll B$ means that a < b for every $a \in A$ and every $b \in B$ etc.

Lecture 10 - 9/9