10. Free and bound variables

Recall Example 9.5: The formula

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

- is true in $\langle\mathbf{Z} ; \cdot\rangle$ under any assignment v with $v\left(x_{2}\right)=2$
- but false when $v\left(x_{2}\right)=0$.

Whether or not $\mathcal{A} \vDash \phi[v]$ only depends on $v\left(x_{2}\right)$, not on $v\left(x_{0}\right)$ or $v\left(x_{1}\right)$.
say: the occurrence of x_{2} in ϕ is free.

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L}-formula, and $x \in\left\{x_{0}, x_{1}, \ldots\right\}$ a variable occurring in ϕ.

The occurrence of x in ϕ is free, if
(i) ϕ is atomic, or
(ii) $\phi=\neg \psi$ resp. $\phi=(\chi \rightarrow \rho)$ and x occurs free in ψ resp. in χ or ρ, or
(iii) $\phi=\forall x_{i} \psi, x$ occurs free in ψ, and $x \neq x_{i}$.

Every other occurrence of x in ϕ is called bound.

In particular, if $x=x_{i}$ and $\phi=\forall x_{i} \psi$, then x is bound in ϕ.

10.2 Example

$(\exists x_{0} P(\underbrace{x_{0}}_{b}, \underbrace{x_{1}}_{f}) \vee \forall x_{1}(P(\underbrace{x_{0}}_{f}, \underbrace{x_{1}}_{b}) \rightarrow \exists x_{0} P(\underbrace{x_{0}}_{b}, \underbrace{x_{1}}_{b})))$

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L}-structure, let v, v^{\prime} be assignments in \mathcal{A} and let ϕ be an \mathcal{L}-formula.

Suppose $v\left(x_{i}\right)=v^{\prime}\left(x_{i}\right)$ for every variable x_{i} with a free occurrence in ϕ.

Then

$$
\mathcal{A}=\phi[v] \text { iff } \mathcal{A} \vDash \phi\left[v^{\prime}\right]
$$

Proof:
For ϕ atomic: exercise
Now use induction on the length of ϕ :

- $\phi=\neg \psi$ and $\phi=(\chi \rightarrow \rho)$: easy
- $\phi=\forall x_{i} \psi$:

IH: Assume the Lemma holds for ψ.
Let
Free $(\phi):=\left\{x_{j} \mid x_{j}\right.$ occurs free in $\left.\phi\right\}$
Free $(\psi):=\left\{x_{j} \mid x_{j}\right.$ occurs free in $\left.\psi\right\}$
$\Rightarrow x_{i} \notin \operatorname{Free}(\phi)$ and

$$
\operatorname{Free}(\phi)=\operatorname{Free}(\psi) \backslash\left\{x_{i}\right\}
$$

Assume $\mathcal{A} \models \forall x_{i} \psi[v]$
to show: for any v^{\star} agreeing with v^{\prime} except possibly at $x_{i}: \mathcal{A} \models \psi\left[v^{\star}\right]$.
for all $x_{j} \in \operatorname{Free}(\phi)$:

$$
v^{\star}\left(x_{j}\right)=v\left(x_{j}\right)=v^{\prime}\left(x_{j}\right)
$$

Let $v^{+}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { if } j \neq i \\ v^{\star}\left(x_{j}\right) & \text { if } j=i\end{cases}$
Then v^{+}agrees with v except possibly at x_{i}.

Hence, by $(\star), \mathcal{A} \models \psi\left[v^{+}\right]$.

But $v^{\star}\left(x_{j}\right)=v^{+}\left(x_{j}\right)$ for all $x_{j} \in \operatorname{Free}(\psi)$.
\Rightarrow by $\mathrm{IH}, \mathcal{A} \models \psi\left[v^{\star}\right]$

10.4 Corollary

Let \mathcal{L} be a language, $\alpha, \beta \in \operatorname{Form}(\mathcal{L})$. Assume the variable x_{i} has no free occurrence in α. Then

$$
\vDash\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)
$$

Proof:
Let \mathcal{A} be an \mathcal{L}-structure and let v be an assignment in \mathcal{A} such that
$\mathcal{A} \vDash \forall x_{i}(\alpha \rightarrow \beta)[v]$
to show: $\mathcal{A} \vDash\left(\alpha \rightarrow \forall x_{i} \beta\right)[v]$.
So suppose $\mathcal{A} \vDash \alpha[v]$ to show: $\mathcal{A} \vDash \forall x_{i} \beta[v]$.

So let v^{\star} be an assignment agreeing with v except possibly at x_{i}.
We want: $\mathcal{A} \vDash \beta\left[v^{\star}\right]$
x_{i} is not free in $\alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha\left[v^{\star}\right]$
$(\star) \Rightarrow \mathcal{A} \vDash(\alpha \rightarrow \beta)\left[v^{\star}\right]$
$\Rightarrow \mathcal{A}=\beta\left[v^{\star}\right]$ \square
Lecture 10-5/9

10.5 Definition

A formula ϕ without free (occurrence of) variables is called a statement or a sentence.

So for any \mathcal{L}-structure \mathcal{A} and any assignment v in \mathcal{A}, whether or not $\mathcal{A} \models \phi[v]$ does not depend on v.

So we write $\mathcal{A} \models \phi$ if $\mathcal{A} \models \phi[v]$ for some/all v.

Say: ϕ is true in \mathcal{A}, or \mathcal{A} is a model of ϕ.
(\rightsquigarrow 'Model Theory')

10.6 Example

Let $\mathcal{L}=\{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (we write x, y, z instead of x_{0}, x_{1}, x_{2})

$$
\begin{aligned}
& \phi_{1}: \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \\
& \phi_{2}: \forall x \exists y(f(x, y) \doteq c \wedge f(y, x) \doteq c) \\
& \phi_{3}: \forall x(f(x, c) \doteq x \wedge f(c, x) \doteq x)
\end{aligned}
$$

and let $\phi=\phi_{1} \wedge \phi_{2} \wedge \phi_{3}$.

Let $\mathcal{A}=<A ; \circ ; e>$ be an \mathcal{L}-structure (i.e. \circ is an interpretation of f, and e is an interpretation of c.)

Then $\mathcal{A} \vDash \phi$ iff \mathcal{A} is a group.

10.7 Example

Let $\mathcal{L}=\{E\}$ be a language with $E=P_{i}^{(2)}$ a binary relation symbol. Consider

$$
\begin{aligned}
& \chi_{1}: \forall x E(x, x) \\
& \chi_{2}: \forall x \forall y(E(x, y) \leftrightarrow E(y, x)) \\
& \chi_{3}: \forall x \forall y \forall z(E(x, y) \rightarrow(E(y, z) \rightarrow E(x, z)))
\end{aligned}
$$

Then for any \mathcal{L}-structure $<A ; R>$:
$<A ; R>=\left(\chi_{1} \wedge \chi_{2} \wedge \chi_{3}\right)$ iff
R is an equivalence relation on A.

Note: Most mathematical concepts can be captured by first-order formulas.

10.8 Example

Let P be a 2 -place (i.e. binary) predicate symbol, $\mathcal{L}:=\{P\}$. Consider the statements

$$
\begin{aligned}
\psi_{1}: & \forall x \forall y(P(x, y) \vee x \doteq y \vee P(y, x)) \\
& (\forall \text { means either - or exclusively: } \\
& (\alpha \vee \beta): \Leftrightarrow((\alpha \vee \beta) \wedge \neg(\alpha \wedge \beta))) \\
\psi_{2}: & \forall x \forall y \forall z((P(x, y) \wedge P(y, z)) \rightarrow P(x, z)) \\
\psi_{3}: & \forall x \forall z(P(x, z) \rightarrow \exists y(P(x, y) \wedge P(y, z))) \\
\psi_{4}: & \forall y \exists x \exists z(P(x, y) \wedge P(y, z))
\end{aligned}
$$

These are the axioms for a dense linear order without endpoints. Let $\psi=\left(\psi_{1} \wedge \ldots \wedge \psi_{4}\right)$. Then $<\mathbf{Q} ;<>\mid=\psi$ and $<\mathbf{R} ;<>\mid=\psi$.

But: 'Completeness' of $<\mathbf{R}$; $<>$ is not captured in 1st-order terms using the langauge \mathcal{L}, but rather in 2 nd-order terms, where also quantification over subsets, rather than only over elements of \mathbf{R} is used:

$$
\forall A, B \subseteq \mathbf{R}((A \ll B) \rightarrow \exists c \in \mathbf{R}(A \leq\{c\} \leq B)
$$

where $A \ll B$ means that $a<b$ for every $a \in A$ and every $b \in B$ etc.

