13. The Completeness Theorem for Predicate Calculus

13.1 Theorem (Gödel)
Let
$$
\Gamma \subseteq Form(\mathcal{L})
$$
, $\phi \in Form(\mathcal{L})$.
If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Two additional assumptions:

- Assume all $\gamma \in \Gamma$ and ϕ are *sentences* the Theorem is true more general, but the proof is much harder and applications are typically to sentences.
- Further assumption (for the start $-$ later **WE do the general case):** *no* ≐-*symbol in any formula of* Γ *or in* φ*.*

Lecture 13 - 1/10

First Step

Call $\Delta \subseteq$ Sent (\mathcal{L}) consistent if for no sentence ψ , both $\Delta \vdash \psi$ and $\Delta \vdash \neg \psi$.

13.2 enough to show

(⋆*) Every consistent set of sentences has a model.*

i.e. Δ consistent \Rightarrow there is an \mathcal{L} -structure \mathcal{A} such that $\mathcal{A} \models \delta$ for every $\delta \in \Delta$.

Proof: Assume $\Gamma \models \phi$ and assume (\star) $\Rightarrow \Gamma \cup \{\neg \phi\}$ has no model \Rightarrow _(*) $\Gamma \cup {\neg \phi}$ is not consistent $\Rightarrow \Gamma \cup {\neg \phi} \vdash \psi$ and $\Gamma \cup {\neg \phi} \vdash \neg \psi$ for some ψ \Rightarrow \Rightarrow \Rightarrow Γ \vdash $(\neg \phi \rightarrow \psi)$ and Γ \vdash $(\neg \phi \rightarrow \neg \psi)$ for some ψ But $\Gamma \vdash ((\neg \phi \rightarrow \psi) \rightarrow ((\neg \phi \rightarrow \neg \psi) \rightarrow \phi))$ [taut.] \Rightarrow $\Gamma \vdash \phi$ [2xMP] \Box 13.2

Lecture 13 - 2/10

Second Step

We shall need an *infinite* supply of constant symbols.

To do this, let ϕ' be the formula obtained by replacing every occurrence of c_n by c_{2n} .

For $\Delta \subset$ Form (L) let

$$
\Delta':=\{\phi'\mid \phi\in\Delta\}
$$

Then

13.3 Lemma

(a) ∆ *consistent* ⇒ ∆′ *consistent (b)* ∆′ *has a model* ⇒ ∆ *has a model.*

Proof: easy exercise.

Lecture 13 - 3/10

Third Step

- $\Delta \subseteq$ Sent (\mathcal{L}) is called maximal consistent if Δ is consistent, and for any $\psi \in \text{Sent}(\mathcal{L})$: $\Delta \vdash \psi$ or $\Delta \vdash \neg \psi$.
- $\Delta \subseteq$ Sent (\mathcal{L}) is called witnessing if for all $\psi \in \text{Form}(\mathcal{L})$ with $\text{Free}(\psi) \subseteq \{x_i\}$ and with $\Delta \vdash \exists x_i \psi$ there is some $c_j \in \text{Const}(\mathcal{L})$ such that $\Delta \vdash \psi[c_j/x_i]$

to prove CT:

13.4 enough to show:

Every maximal consistent witnessing set of sentences has a model.

Lecture 13 - 4/10

For the proof of 13.4 we need 2 Lemmas:

13.5 Lemma

If $\Delta \subseteq$ *Sent*(\mathcal{L}) *is consistent, then for any sentence* ψ , either $\Delta \cup {\psi}$ *or* $\Delta \cup {\neg \psi}$ *is consistent.*

Proof: Exercise – as for Propositional Calcu- \Box

13.6 Lemma

Assume $\Delta \subseteq$ *Sent*(\mathcal{L}) *is consistent,* $\exists x_i \psi \in$ $Sent(\mathcal{L})$, $\Delta \vdash \exists x_i \psi$, and c_j is not occurring *in* ψ *nor in any* $\delta \in \Delta$ *.*

Then $\Delta \cup {\psi[c_j/x_i]}$ *is consistent.*

Lecture 13 - 5/10

Proof:

Assume, for a contradiction, that there is some $\chi \in \text{Sent}(\mathcal{L})$ such that

$$
\Delta \cup {\{\psi[c_j/x_i]\}} \vdash \chi \text{ and } \Delta \cup {\{\psi[c_j/x_i]\}} \vdash \neg \chi.
$$

May assume that c_j does *not* occur in χ (since $\vdash (\chi \rightarrow (\neg \chi \rightarrow \theta))$ for *any* sentence θ).

By DT,
$$
\Delta \vdash (\psi[c_j/x_i] \rightarrow \chi)
$$

and $\Delta \vdash (\psi[c_j/x_i] \rightarrow \neg \chi)$.

Then also

 $\Delta \vdash (\psi \rightarrow \chi)$ and $\Delta \vdash (\psi \rightarrow \neg \chi)$ (Exercise Sheet ♯ 4 (2)(ii))

Lecture 13 - 6/10

By
$$
\forall
$$
, $\Delta \vdash \forall x_i(\psi \to \chi)$
and $\Delta \vdash \forall x_i(\psi \to \neg \chi)$
(note that $x_i \notin \text{Free}(\delta)$ for any $\delta \in \Delta \subseteq \text{Sent}(\mathcal{L})$).

Now: $\vdash (\forall x_i(A \rightarrow B) \rightarrow (\exists x_i A \rightarrow B))$ *for any* $A, B \in \text{Form}(\mathcal{L})$ *with* $x_i \notin \text{Free}(B)$ (Exercise Sheet \sharp 4, (2)(i))

$$
MP \Rightarrow \Delta \vdash (\exists x_i \psi \rightarrow \chi)
$$

and
$$
\Delta \vdash (\exists x_i \psi \rightarrow \neg \chi)
$$

$$
(\chi, \neg \chi \in Sent(\mathcal{L}), \text{ so } x_i \notin Free(\chi))
$$

By hypothesis, $\Delta \vdash \exists x_i \psi$ \Rightarrow by MP, $\Delta \vdash \chi$ and $\Delta \vdash \neg \chi$ contradicting consistency of ∆.

 $\square_{13.6}$

Lecture 13 - 7/10

Proof of 13.4:

Let Δ be any consistent set of sentences.

to show: ∆ has a model *assuming that any maximal consistent, witnessing set of sentences has a model*.

By 13.3(a), Δ' is consistent and does not contain any c_{2m+1} .

Let $\phi_1, \phi_2, \phi_3, \ldots$ be an enumeration of Sent $(\mathcal{L}' \cup \{c_1, c_3, c_5, \ldots\})$.

Construct finite sets \subseteq Sent $(\mathcal{L}'\cup \{c_1,c_3,c_5,\ldots\})$

 $\Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \ldots$

such that $\Delta' \cup \Gamma_n$ is consistent for each $n \geq 0$ as follows:

Lecture 13 - 8/10

Let $\Gamma_0 := \emptyset$.

If Γ_n has been constructed let

 $\Gamma_{n+1/2} :=$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\lceil n \cup {\phi_{n+1}} \rceil$ if $\Delta' \cup \lceil n \cup {\phi_{n+1}} \rceil$ is consistent $\Gamma_n\cup\{\neg\phi_{n+1}\}$ otherwise $\Rightarrow \mathsf{\Gamma}_{n+1/2}$ is consistent (Lemma 13.5)

Now, if $\neg \phi_{n+1} \in \Gamma_{n+1/2}$ or if ϕ_{n+1} is *not* of the form $\exists x_i \psi$, let $\mathsf{\Gamma}_{n+1}:=\mathsf{\Gamma}_{n+1/2}.$

If not, i.e. if $\phi_{n+1} = \exists x_i \psi \, \in \, {\sf \Gamma}_{n+1/2}$ then $\Delta' \cup \Gamma_{n+1/2} \vdash \exists x_i \psi.$

Choose m large enough such that c_{2m+1} does not occur in any formula in $\Delta' \cup \Gamma_{n+1/2} \cup \{\psi\}$ (possible since $\Gamma_{n+1/2}\cup\{\psi\}$ is finite and Δ' has only even constants).

Lecture 13 - 9/10

Let $\Gamma_{n+1} := \Gamma_{n+1/2} \cup \{\psi[c_{2m+1}/x_i]\}$ \Rightarrow by Lemma 13.6, Γ_{n+1} is consistent.

Let $\Gamma := \Delta' \cup \bigcup_{n \geq 0} \Gamma_n$.

⇒ Γ is maximal consistent (as in Propositional Calculus) and Γ is witnessing (by construction).

By assumption, Γ has a model, say \mathcal{A} .

 \Rightarrow in particular, $\Gamma \models \delta$ for any $\delta \in \Delta'$

 \Rightarrow by Lemma 13.3(b), Δ has a model

 $\square_{13.4}$