13.7 Theorem (CT after reduction 13.4) Let Γ be a maximal consistent witnessing set of sentences not containing $a \doteq -symbol$. Then Γ has a model.

Proof:

Let $A := \{t \in \text{Term}(\mathcal{L}) \mid t \text{ is closed}\}$ (recall: t **closed** means no variables in t).

A will be the domain of our model A of Γ (A is called **term model**).

For $P = P_n^{(k)} \in \operatorname{Pred}(\mathcal{L})$ resp. $f = f_n^{(k)} \in \operatorname{Fct}(\mathcal{L})$ resp. $c = c_n \in \operatorname{Const}(\mathcal{L})$ define the interpretations $P_{\mathcal{A}}$ resp. $f_{\mathcal{A}}$ resp. $c_{\mathcal{A}}$ by

$$P_{\mathcal{A}}(t_1, \dots, t_k)$$
 holds $:\Leftrightarrow \Gamma \vdash P(t_1, \dots, t_k)$
 $f_{\mathcal{A}}(t_1, \dots, t_k) := f(t_1, \dots, t_k)$
 $c_{\mathcal{A}} := c$

Lecture 14 - 1/8

to show: $A \models \Gamma$ (i.e. $A \models \Gamma[v]$ for some/all assignments v in A: note that Γ contains only sentences).

Let v be an assignment in A, say $v(x_i) =: s_i \in A$ for i = 0, 1, 2, ...

Claim 1: For any $u \in \text{Term}(\mathcal{L})$: $\tilde{v}(u) = u[\vec{s}/\vec{x}]$ (:= the closed term obtained by replacing each x_i in u by s_i)

Proof: by induction on u

$$- u = x_i \Rightarrow$$

$$\widetilde{v}(u) = v(x_i) = s_i = x_i[s_i/x_i] = u[\vec{s}/\vec{x}]$$

$$- u = c \in \text{Const}(\mathcal{L}) \Rightarrow$$

$$\widetilde{v}(u[\vec{s}/\vec{x}]) = \widetilde{v}(u) = \widetilde{v}(c) = c_{\mathcal{A}}$$

$$- u = f(t_1, \dots, t_k) \Rightarrow$$

$$\begin{split} \widetilde{v}(u) &:= f_{\mathcal{A}}(\widetilde{v}(t_1), \dots, \widetilde{v}(t_k)) \\ &= f_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) \quad \text{by IH} \\ &= f(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) \quad \text{by def. of } f_{\mathcal{A}} \\ &= f(t_1, \dots, t_k)[\vec{s}/\vec{x}] \quad \quad \text{by def. of subst.} \\ &= u[\vec{s}/\vec{x}] \quad \qquad \Box_{\text{Claim 1}} \end{split}$$

Lecture 14 - 2/8

Claim 2: For any $\phi \in Form(\mathcal{L})$ without \doteq -symbol:

$$\mathcal{A} \models \phi[v] \text{ iff } \Gamma \vdash \phi[\vec{s}/\vec{x}],$$

where $\phi[\vec{s}/\vec{x}]$:= the sentence obtained by replacing each *free* occurrence of x_i by s_i : note that s_i is free for x_i in ϕ because s_i is a *closed* term.

Proof: by induction on ϕ

 ϕ atomic, i.e. $\phi = P(t_1, \dots, t_k)$ for some $P = P_n^{(k)} \in \text{Pred}(\mathcal{L})$

Then

$$\begin{array}{lll} \mathcal{A} \models \phi[v] \\ \text{iff} & P_{\mathcal{A}}(\widetilde{v}(t_1), \ldots, \widetilde{v}(t_k)) & [\text{def. of } '\models '] \\ \text{iff} & P_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \ldots, t_k[\vec{s}/\vec{x}]) & [\text{Claim 1}] \\ \text{iff} & \Gamma \vdash P(t_1[\vec{s}/\vec{x}], \ldots, t_k[\vec{s}/\vec{x}]) & [\text{def. of } P_{\mathcal{A}}] \\ \text{iff} & \Gamma \vdash P(t_1, \ldots, t_k)[\vec{s}/\vec{x}] & [\text{def. subst.}] \\ \text{iff} & \Gamma \vdash \phi[\vec{s}/\vec{x}] & [\text{def. subst.}] \\ \end{array}$$

Note that Claim 2 might be false for formulas of the form $t_1 \doteq t_2$: might have $\Gamma \vdash c_0 \doteq c_1$, but c_0, c_1 are distinct elements in A.

Lecture 14 - 3/8

Induction Step

$$\mathcal{A} \models \neg \phi[v]$$
 iff not $\mathcal{A} \models \phi[v]$ [def. of ' \models '] iff not $\Gamma \vdash \phi[\vec{s}/\vec{x}]$ [IH] iff $\Gamma \vdash \neg \phi[\vec{s}/\vec{x}]$ [Γ max. cons.]
$$\mathcal{A} \models (\phi \to \psi)[v]$$
 iff not $\mathcal{A} \models \phi[v]$ or $\mathcal{A} \models \psi[v]$ [def. ' \models '] iff not $\Gamma \vdash \phi[\vec{s}/\vec{x}]$ or $\Gamma \vdash \psi[\vec{s}/\vec{x}]$ [IH] iff $\Gamma \vdash \neg \phi[\vec{s}/\vec{x}]$ or $\Gamma \vdash \psi[\vec{s}/\vec{x}]$ [Γ max.] iff $\Gamma \vdash (\neg \phi[\vec{s}/\vec{x}] \lor \psi[\vec{s}/\vec{x}])$ [def. ' \vdash '] iff $\Gamma \vdash (\phi[\vec{s}/\vec{x}] \to \psi[\vec{s}/\vec{x}])$ [taut.] iff $\Gamma \vdash (\phi \to \psi)[\vec{s}/\vec{x}]$ [def. subst.]

$$\forall$$
-step ' \Rightarrow ' Suppose $\mathcal{A} \models \forall x_i \phi[v]$ (*) but not $\Gamma \vdash (\forall x_i \phi)[\vec{s}/\vec{x}]$

$$\Rightarrow \Gamma \vdash (\neg \forall x_i \phi)[\vec{s}/\vec{x}] \qquad (\Gamma \text{ max.})$$
$$\Rightarrow \Gamma \vdash (\exists x_i \neg \phi)[\vec{s}/\vec{x}] \qquad (\text{Exercise})$$

Lecture 14 - 4/8

Now let ϕ' be the result of substituting each free occurrence of x_j in ϕ by s_j for all $j \neq i$.

$$\Rightarrow (\exists x_i \neg \phi)[\vec{s}/\vec{x}] = \exists x_i \neg \phi'$$
$$\Rightarrow \Gamma \vdash \exists x_i \neg \phi'$$

 Γ witnessing \Rightarrow $\Gamma \vdash \neg \phi'[c/x_i]$ for some $c \in \mathsf{Const}(\mathcal{L})$

Define

$$v^{\star}(x_{j}) := \begin{cases} v(x_{j}) & \text{if } j \neq i \\ c & \text{if } j = i \end{cases} \text{ and } s_{j}^{\star} := \begin{cases} s_{j} & \text{if } j \neq i \\ c & \text{if } j = i \end{cases}$$
$$\Rightarrow \neg \phi'[c/x_{i}] = \neg \phi[\vec{s^{\star}}/\vec{x}]$$
$$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^{\star}}/\vec{x}]$$
$$\Rightarrow \Gamma \models \neg \phi[v^{\star}] \qquad [IH]$$

But, by (\star) , $\mathcal{A} \models \phi[v^{\star}]$: contradiction.

Lecture 14 - 5/8

∀-step '**←**':

Suppose $\mathcal{A} \not\models \forall x_i \phi[v]$

 \Rightarrow for some v^* agreeing with v except possibly at x_i

$$\mathcal{A} \models \neg \phi[v^*]$$

Let
$$s_j^{\star} := \begin{cases} s_j & \text{for } j \neq i \\ v^{\star}(x_j) & \text{for } j = i \end{cases}$$

IH
$$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^*}/\vec{x}],$$

i.e. $\Gamma \vdash \neg \phi'[s_i^*/x_i],$

where ϕ' is the result of substituting each free occurrence of x_j in ϕ by s_j for all $j \neq i$

$$\Rightarrow \Gamma \vdash \exists x_i \neg \phi'$$

(Exercise:

 $\chi \in \text{Form}(\mathcal{L})$, $\text{Free}(\chi) \subseteq \{x_i\}$, s a closed term $\Rightarrow \vdash (\chi[s/x_i] \to \exists x_i \chi))$

Lecture 14 - 6/8

So

$$\Gamma \vdash \neg \forall x_i \neg \neg \phi'$$

$$\Rightarrow \Gamma \vdash \neg \forall x_i \phi'$$

$$\Rightarrow \Gamma \vdash (\neg \forall x_i \phi)[\vec{s}/\vec{x}]$$

$$\Rightarrow \Gamma \vdash (\forall x_i \phi)[\vec{s}/\vec{x}]$$

□Claim 2

Now choose any $\phi \in \Gamma \subseteq Sent(\mathcal{L})$

$$\Rightarrow \phi[\vec{s}/\vec{x}] = \phi$$

$$\Rightarrow$$
 $\mathcal{A} \models \phi[v]$, i.e. $\mathcal{A} \models \phi$

[Claim 2]

$$\Rightarrow$$
 $A \models \Gamma$

 $\Box_{13.7}$

Lecture 14 - 7/8

13.8 Modification required for ≐-symbol

Define an equivalence relation E on A by

$$t_1Et_2$$
 iff $\Gamma \vdash t_1 \doteq t_2$

(easy to check: this *is* an equivalence relation, e.g. transitivity = (1)(ii) of sheet \sharp 4).

Let A/E be the set of equivalence classes t/E (with $t \in A$).

Define \mathcal{L} -structure \mathcal{A}/E with domain A/E by

$$P_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) :\Leftrightarrow \Gamma \vdash P(t_1, \dots, t_k)$$

 $f_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) := f_{\mathcal{A}}(t_1, \dots, t_k)/E$
 $c_{\mathcal{A}/E} := c_{\mathcal{A}}/E$

check: independence of representatitves of t/E (this is the purpose of Axiom **A7**).

Rest of the proof is much the same as before.

[□]13.1

Lecture 14 - 8/8