14. Applications of Godel's
Completeness Theorem

14.1 Compactness Theorem for Predicate
Calculus

Let L be a first-order language

and let I' C Sent(L).

Then I has a model iff every finite subset of
[ has a model.

Proof: as for Propositional Calculus — Exercise
sheet ¢ 4, (5)(ii).

14.2 Example

Let™ C Sent(L). Assume that for every N > 1,
[ has a model whose domain has at least N
elements.

Then T has a model with an infinite domain.
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Proof:

For each n > 2 let y,, be the sentence

E|£IZ15|:C2 Tt E|CE‘n /\ o = L 4
1<i<j<n
= for any L-structure A= (A4;...),
A= xn iff fA > n
Let I :=TU{xn|n>1}.

If Tg C I is finite,

let N be maximal with xy € lg.

By hypothesis, ' U{xxy} has a model.
= [ o has a model

(note that Fxny = xnv_1 = XN_2 — .. )

= By the Compactness Theorem 14.1,
" has a model, say A= (A4;...)

= ARExp foralln = A= o0 O
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14.3 The Lowenheim-Skolem Theorem
Let ' C Sent(L) be consistent.
Then I has a model with a countable domain.

Proof:

T his follows from the proof of the Complete-
ness T heorem:

The term model constructed there was count-
able, because there are only countably many
closed terms.

14.4 Definition
(i) Let A be an L-structure.
Then the £L-theory of A is

Th(A) ;= {¢ € Sent(L) | A = ¢},
the set of all £L-sentences true in A.
Note: Th(A) is maximal consistent.
(ii) If A and B are L-structures with Th(A) =
Th(B) then A and B are elementarily equiv-
alent (in symbols ‘A= B").
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14.5 Remark
Let T CSent(L) be any set of L-sentences.

(a) Then TFAE:

(i) I is strongly maximal consistent (i.e. for
each L-sentence ¢, p € of =¢p € )

(ii) T =Th(A) for some L-structure A

Proof:
(i) = (ii): Completeness Theorem
Rest: clear. O

(b) T is maximal consistent if and only if T
has models, and, for any two models A and B,
A= B.
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A worked example:
Dense linear orderings without endpoints

Let £ = {<} be the language with just one
binary predicate symbol ‘<’,

and let ' be the L-theory of dense linear or-
derings without endpoints (cf. Example 10.8)
consisting of the axioms q,...,Ya:

Y1 VaVy((e < yVax=yVy<x)
ANz <yAhxz=y)V(e<yAy<xz)))
Yo o VaVyVz(ze <y Ay < z) - x < z)
Y3 VaVz(z < z— dy(z <y Ay < z))
Vg o Vydxdz(x <y Ay < z)

14.6 (a) Examples

Q, R, ]0,1[, R\ {0}, [V2,7]nQ, ]0,1[U]2,3],
or Z x R with lexicographic ordering:

(a,b) < (c,d) a<cor (a=c&b<d)

(b) Counterexamples [0, 1], Z, {0}, R\]O, 1]
or R x Z with lexicographic ordering
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14.7 Theorem

Let ' be the theory of dense linear orderings
without endpoints, and let A = (A;<y4) and
B = (B;<p) be two countable models.

Then A and B are isomorphic, i.e. there is an
order preserving bijection between A and B.

Proof: Note: A and B are infinite.
Choose an enumeration (no repeats)

A {a1,ap,a3,...}
B {bl,bQ,b3,...}

Define ¢ : A — B recursively s.t. for all n:

(xn) for all 7,7 <n: o¢(a;) <A qb(aj) < a5 < A G

Suppose ¢ has been defined on {a1,...,an}
satisfying (xn).
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Let Qb(an—l—l) — bm1
where m > 1 is minimal s.t.

for all 2 <n: bn <B ¢(CLZ') A= Ap+1 <A a4,

i.e. the position of ¢(a,41)
relative to ¢(a1),...,¢(an)

is the same as that of a,41

relative to aq1,...,an
(possible as A, B=1).
= (*p4-1) holds for aq,...,a,41
= ¢ IS injective
And ¢ is surjective, by minimality of m. O
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14.8 Corollary
[T is maximal consistent

Proof:

to show: Th(A) =Th(B) for any A,B=1T
(by Remark 14.5(b))

By the Theorem of Lowenheim-Skolem (14.3),
Th(A) and Th(B) have countable models,
say Ag and Bp.

= Th(Ag) =Th(A) and Th(Bg) =Th(B)
Theorem 14.7 = Agp and B are isomorphic

= Th(Ag) =Th(Bp)

— Th(A) =Th(B) 0
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Recall that R is complete:

for any subsets A, B C R with A'<'B
(i.,e. a<bforany aec A,be B)
there is v € R with A'<'{~}'<'B.

Q is not complete:

take A={z€Q|xz <7}
B={zecQ|nm<x}

14.9 Corollary
Th{(Q; <)) =Th((R; <))

In particular, the completeness of R is not a
first-order property,

i.e. there is no A C Sent(L) such that for all
L-structures (A; <),

(A; <) = A Iff (A; <) is complete.
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