
15. Normal Forms

(a) Prenex Normal Form

A formula is in prenex normal form (PNF)

if it has the form

Q1xi1Q2xi2 · · ·Qrxir ψ,

where each Qi is a quantifier

(i.e. either ∀ or ∃), and where

ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every φ ∈ Form(L) is logically equivalent to an

L-formula in PNF.

Proof: Induction on φ

(working in the language with ∀, ∃,¬,∧):

φ atomic: OK

Lecture 16 - 1/8



φ = ¬ψ,

say φ↔ ¬Q1xi1Q2xi2 · · ·Qrxir χ

Then φ↔ Q−
1 xi1Q

−
2 xi2 · · ·Q

−
r xir ¬χ,

where Q− = ∃ if Q = ∀, and Q− = ∀ if Q = ∃

φ = (χ ∧ ρ) with χ, ρ in PNF

Note that ⊢ (∀xjψ[xj/xi] ↔ ∀xiψ),

provided xj does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ

do not occur in ρ and vice versa.

But then, e.g. (∀xα ∧ ∃yβ) ↔ ∀x∃y(α ∧ β) etc.

✷
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(b) Skolem Normal Form

Recall: In the proof of CT, we introduced wit-

nessing new constants for existential formulas

such that

∃xφ(x) is satisfiable iff φ(c) is satisfiable.

This way an ∃x in front of a formula could be

removed at the expense of a new constant.

Now we remove existential quantifiers ‘inside’ a

formula at the expense of extra function sym-

bols:

15.2 Observation:

Let φ = φ(x, y) be an L-formula with x, y ∈Free(φ).

Let f be a new unary function symbol (not in

L).
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Then ∀x∃yφ(x, y) is satisfiable iff ∀xφ(x, f(x))

is satisfiable.

(f is called a Skolem function for φ.)

Proof: ‘⇐’: clear

‘⇒’: Let A be an L-structure with A |= ∀x∃yφ(x, y)

⇒ for every a ∈ A there is some b ∈ A with

φ(a, b)

Interpret f by a function assigning to each a ∈

A one such b

(this uses the Axiom of Choice!). ✷

Example: R |= ∀x∃y(x
.
= y2 ∨ x

.
= −y2) – here

f(x) =
√

| x | will do.
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15.3 Theorem

For every L-formula φ

there is a formula φ⋆

(with new constant and function symbols)

having only universal quantifiers in its PNF

such that

φ is satisfiable iff φ⋆ is.

More precisely,

any L-structure A

can be made into a structure A⋆

interpreting the new constant and function sym-

bols

such that

A |= φ iff A⋆ |= φ⋆.
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16. Towards an uncountable language
(non-examinable)

Our language LFOPC is countable.

Now consider a first-order language of any car-

dinality κ ≥ ℵ0 by using

• k-ary predicate symbols (P
(k)
α )α<κ

• k-ary function symbols (fkβ)β<κ

• constant symbols (cγ)γ<κ

❀ still get DT, CT and Compactness Theorem

(using a bit more set theory)

16.1 Theorem: Löwenheim-Skolem ↑

Let L be a first-order language of cardinality

κ ≥ ℵ0, let λ ≥ κ be any cardinal, and let A

be an infinite L-structure. Then there is an

L-structure B ≡ A of cardinality λ.
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Proof: Introduce new constant symbols (dδ)δ<λ
and let B0 be the term model of

ThL(A) ∪ {¬dδ
.
= dδ′ | δ < δ′ < λ}.

⇒ B0 has cardinality λ

Let B be the L-reduct of B0 (i.e., forget about

the dδ’s) ⇒ B ≡ A ✷

Notation: p prime or p = 0, Lring := {+, ·; 0.1}

ACFp:= the Lring-theory of algebraically closed

fields of characteristic p.

16.2 Fact:

K1,K2 |= ACFp s.t. ♯K1 = ♯K2 > ℵ0 ⇒ K1 ≃ K2

16.3 Corollary:

ACFp is maximally consisitent.

Proof: Let F1, F2 |= ACFp

to show: F1 ≡ F2 (i.e., Th(F1) =Th(F2))

by L-S (↓ and ↑), we find

K1 ≡ F1, K2 ≡ F2 s.t. ♯K1 = ♯K2 = ♯C

⇒ (16.2) K1 ≃ K2, so F1 ≡ K1 ≡ K2 ≡ F2 ✷
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16.4 Fact:

(a) p prime, n ∈ N ⇒ there is a unique field Fpn

with ♯Fpn = pn (unique up to isomorphism).

(b) If m | n then Fpm ⊆ Fpn.

(c) F̄p :=
⋃

n∈N Fpn! |= ACFp

16.5 Corollary to CT: For any φ ∈Sent(Lring),

ACF0 |= φ iff ACFp |= φ for almost all p > 0.

16.6 Theorem: Any injective polynomial func-

tion f : Cn → Cn is surjective.

Proof: Let φn,d ∈ Sent(Lring) say this for all

f = (f1, . . . , fn) of degree ≤ d.

Then F̄p |= φn,d for all primes p:

f : F̄np → F̄np polynomial of degree ≤ d

and y = (y1, . . . , yn) ∈ F̄np
⇒ ∃m s.t. Fpm contains all yi

and all coefficients of all fj
⇒ ∃x ∈ Fnpm ⊆ F̄np with f(x) = y

⇒ by Corollary 16.5, ACF0 |= φn,d
⇒ C |= φn,d ✷
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