15. Normal Forms(a) Prenex Normal Form

A formula is in **prenex normal form (PNF)** if it has the form

$$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \psi,$$

where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every $\phi \in Form(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in **PNF**.

Proof: Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$):

 ϕ atomic: OK

Lecture 16 - 1/8

$$\phi = \neg \psi,$$

say $\phi \leftrightarrow \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \chi$

Then $\phi \leftrightarrow Q_1^- x_{i_1} Q_2^- x_{i_2} \cdots Q_r^- x_{i_r} \neg \chi$, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$

 $\phi = (\chi \land \rho)$ with χ, ρ in PNF Note that $\vdash (\forall x_j \psi[x_j/x_i] \leftrightarrow \forall x_i \psi)$, provided x_j does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ do not occur in ρ and vice versa.

But then, e.g. $(\forall x \alpha \land \exists y \beta) \leftrightarrow \forall x \exists y (\alpha \land \beta)$ etc.

(b) Skolem Normal Form

Recall: In the proof of CT, we introduced witnessing new constants for existential formulas such that

 $\exists x \phi(x)$ is satisfiable iff $\phi(c)$ is satisfiable.

This way an $\exists x$ in front of a formula could be removed at the expense of a new constant.

Now we remove existential quantifiers 'inside' a formula at the expense of extra function symbols:

15.2 Observation:

Let $\phi = \phi(x, y)$ be an \mathcal{L} -formula with $x, y \in Free(\phi)$. Let f be a new unary function symbol (not in \mathcal{L}).

Lecture 16 - 3/8

Then $\forall x \exists y \phi(x, y)$ is satisfiable iff $\forall x \phi(x, f(x))$ is satisfiable. (f is called a **Skolem function** for ϕ .)

Proof: '⇐': clear

' \Rightarrow ': Let \mathcal{A} be an \mathcal{L} -structure with $\mathcal{A} \models \forall x \exists y \phi(x, y)$

 \Rightarrow for every $a \in A$ there is some $b \in A$ with $\phi(a,b)$

Interpret f by a function assigning to each $a \in A$ one such b (this uses the Axiom of Choice!).

Example: $\mathbb{R} \models \forall x \exists y (x \doteq y^2 \lor x \doteq -y^2) - here$ $f(x) = \sqrt{|x|}$ will do.

Lecture 16 - 4/8

15.3 Theorem

For every \mathcal{L} -formula ϕ there is a formula ϕ^* (with new constant and function symbols) having only universal quantifiers in its PNF such that

 ϕ is satisfiable iff ϕ^* is.

More precisely, any \mathcal{L} -structure \mathcal{A} can be made into a structure \mathcal{A}^* interpreting the new constant and function symbols such that

 $\mathcal{A} \models \phi \text{ iff } \mathcal{A}^* \models \phi^*.$

Lecture 16 - 5/8

16. Towards an uncountable language *(non-examinable)*

Our language \mathcal{L}^{FOPC} is countable. Now consider a first-order language of any cardinality $\kappa \geq \aleph_0$ by using

- k-ary predicate symbols $(P_{\alpha}^{(k)})_{\alpha < \kappa}$
- k-ary function symbols $(f^k_\beta)_{\beta < \kappa}$
- constant symbols $(c_{\gamma})_{\gamma < \kappa}$

 \rightsquigarrow still get DT, CT and Compactness Theorem (using a bit more set theory)

16.1 Theorem: Löwenheim-Skolem \uparrow Let \mathcal{L} be a first-order language of cardinality $\kappa \geq \aleph_0$, let $\lambda \geq \kappa$ be any cardinal, and let \mathcal{A} be an infinite \mathcal{L} -structure. Then there is an \mathcal{L} -structure $\mathcal{B} \equiv \mathcal{A}$ of cardinality λ .

Lecture 16 - 6/8

Proof: Introduce new constant symbols $(d_{\delta})_{\delta < \lambda}$ and let \mathcal{B}_0 be the term model of

$$\mathsf{Th}_{\mathcal{L}}(\mathcal{A}) \cup \{ \neg d_{\delta} \doteq d_{\delta'} \mid \delta < \delta' < \lambda \}.$$

 $\Rightarrow \mathcal{B}_0 \text{ has cardinality } \lambda$ Let \mathcal{B} be the \mathcal{L} -reduct of \mathcal{B}_0 (i.e., forget about the d_{δ} 's) $\Rightarrow \mathcal{B} \equiv \mathcal{A}$ \Box

Notation: p prime or p = 0, $\mathcal{L}_{ring} := \{+, \cdot; 0.1\}$ **ACF** $_p$:= the \mathcal{L}_{ring} -theory of algebraically closed fields of characteristic p.

16.2 Fact: $K_1, K_2 \models \mathsf{ACF}_p \text{ s.t. } \sharp K_1 = \sharp K_2 > \aleph_0 \Rightarrow K_1 \simeq K_2$

16.3 Corollary:

ACF_p is maximally consisitent. Proof: Let $F_1, F_2 \models \text{ACF}_p$ to show: $F_1 \equiv F_2$ (i.e., $\text{Th}(F_1) = \text{Th}(F_2)$) by L-S (\downarrow and \uparrow), we find $K_1 \equiv F_1, K_2 \equiv F_2$ s.t. $\#K_1 = \#K_2 = \#\mathbb{C}$ \Rightarrow (16.2) $K_1 \simeq K_2$, so $F_1 \equiv K_1 \equiv K_2 \equiv F_2$

Lecture 16 - 7/8

16.4 Fact:

(a) p prime, $n \in \mathbb{N} \Rightarrow$ there is a unique field \mathbb{F}_{p^n} with $\sharp \mathbb{F}_{p^n} = p^n$ (unique up to isomorphism). (b) If $m \mid n$ then $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$. (c) $\overline{\mathbb{F}}_p := \bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^{n!}} \models \mathsf{ACF}_p$

16.5 Corollary to CT: For any $\phi \in \text{Sent}(\mathcal{L}_{ring})$, **ACF**₀ $\models \phi$ iff **ACF**_p $\models \phi$ for almost all p > 0.

16.6 Theorem: Any injective polynomial function $f : \mathbb{C}^n \to \mathbb{C}^n$ is surjective. Proof: Let $\phi_{n,d} \in \text{Sent}(\mathcal{L}_{ring})$ say this for all $f = (f_1, \ldots, f_n)$ of degree $\leq d$. Then $\overline{\mathbb{F}}_p \models \phi_{n,d}$ for all primes p: $f : \overline{\mathbb{F}}_p^n \to \overline{\mathbb{F}}_p^n$ polynomial of degree $\leq d$ and $\mathbf{y} = (y_1, \ldots, y_n) \in \overline{\mathbb{F}}_p^n$ $\Rightarrow \exists m \text{ s.t. } \mathbb{F}_{p^m}$ contains all y_i and all coefficients of all f_j $\Rightarrow \exists \mathbf{x} \in \mathbb{F}_{p^m}^n \subseteq \overline{\mathbb{F}}_p^n$ with $f(\mathbf{x}) = \mathbf{y}$ \Rightarrow by Corollary 16.5, $\mathbf{ACF}_0 \models \phi_{n,d}$ $\Rightarrow \mathbb{C} \models \phi_{n,d}$

Lecture 16 - 8/8