15. Normal Forms

(a) Prenex Normal Form

A formula is in prenex normal form (PNF)
if it has the form

le’ilQQwiQ T Q’rm’ir Y,

where each @Q); is a quantifier
(i.e. either V or 3), and where
Y is a formula containing no quantifiers.

15.1 PNF-Theorem

Every ¢ € Form(L) is logically equivalent to an
L-formula in PNF.

Proof: Induction on ¢
(working in the language with V,3, =, A):

¢ atomic: OK
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b = —p,
say ¢ <> 2Q1x;, Q2x;, - - - Qrxy, X

Then ¢ < Q7 z;,Q5 i, - - Qp x4, —X,
where Q- =3ifQ=V, and Q— =V if Q = 3

&= (x N\ p) with x,p in PNF

Note that = (Vx;v¢(z;/z;] +» Va;9),
provided z; does not occur in (Ex. 12.5)

So w.l.o.g. the variables quantified over in x
do not occur in p and vice versa.

But then, e.g. (Vza A JyB) < Vxdy(a A 3) etc.
O
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(b) Skolem Normal Form

Recall: In the proof of CT, we introduced wit-
nessing new constants for existential formulas
such that

Jdxg(x) is satisfiable iff ¢(c) is satisfiable.

This way an dx in front of a formula could be
removed at the expense of a new constant.

Now we remove existential quantifiers ‘inside’ a
formula at the expense of extra function sym-
bols:

15.2 Observation:
Let » = ¢(x,y) be an L-formula with x,y € Free(¢).
Let f be a new unary function symbol (not in
L).
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Then Vx3yo(x,y) is satisfiable iff Vxop(x, f(x))
is satisfiable.
(f is called a Skolem function for ¢.)

Proof: '«<': clear

‘=": Let A be an L-structure with A |= Vz3yop(x,y)

= for every a € A there is some b € A with

¢(a,b)

Interpret f by a function assigning to each a €
A one such b

(this uses the Axiom of Choice!). O

Example: R = Vz3y(x = y2 Vz = —y?) — here

f(x) = /| = | will do.
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15.3 Theorem

For every L-formula ¢

there is a formula ¢*

(with new constant and function symbols)
having only universal quantifiers in its PNF
such that

¢ is satisfiable iff ¢* is.

More precisely,

any L-structure A

can be made into a structure A*

interpreting the new constant and function sym-
bols

such that

A= ¢ Iff A* = ¢
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16. Towards an uncountable language
(non-examinable)

Our language £FOPC s countable.
Now consider a first-order language of any car-
dinality k > Xg by using

e k-ary predicate symbols (Po(ék))aq
e k-ary function symbols (f5)g<

e constant symbols (cy)y<k

~ still get DT, CT and Compactness Theorem
(using a bit more set theory)

16.1 Theorem: Lowenheim-Skolem t

Let L be a first-order language of cardinality
k > g, let A\ > k be any cardinal, and let A
be an infinite L-structure. Then there is an
L-structure B = A of cardinality \.
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Proof: Introduce new constant symbols (ds)s<
and let By be the term model of

Thy(A) U {—ds = dgs | 6 < § < A}

= Bp has cardinality A
Let B be the L-reduct of By (i.e., forget about
the ds's) = B=A4 O

Notation: p primeorp =0, L, .= {+,-, 0.1}
ACF,:= the L,;,,-theory of algebraically closed
fields of characteristic p.

16.2 Fact:
Ki,Ky &= ACF, s.t. §K1 = K> > Ng = K1 ~ K>

16.3 Corollary:

ACF, is maximally consisitent.

Proof: Let Fi, F> = ACF,

to show: F7 = F5 (i.e., Th(Fl) ITh(FQ))

by L-S (| and 1), we find

K1 = F7, Ko = F> s.t. ﬂKl = ﬁKQ = JjCC

= (16.2) Ki~Ky,sOo F1 =K1 =Kry=F>, O
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16.4 Fact:

(a) p prime, n € N = there is a unique field Fn
with §F,» = p™ (unique up to isomorphism).
(b) £fm | n then Fpm C Fpn.

16.5 Corollary to CT: Forany ¢ €Sent(L,ing),
ACFq = ¢ iff ACFy = ¢ for almost all p > 0.

16.6 Theorem: Any injective polynomial func-
tion f . C" — C" is surjective.

Proof: Let ¢, 4 € Sent(L,;,4) say this for all
f=1(1,...,fn) of degree <d.

Then Fy = ¢, 4 for all primes p:
f : Fy — F) polynomial of degree < d
and y = (y1,...,yn) € F},
= dm s.t. Fym contains all y;
and all coefficients of all f;
= Ix € Fm C Fyy with f(x)=y

= by Corollary 16.5, ACFg = ¢y, 4
= C |: an,d -
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