B1.1 Logic

Problem Sheet $\sharp 1$

Please, if your class is in week 2, read the slides of Lectures 1 and 2 before attempting this sheet.
(1) (a) Which of the following are formulas of \mathcal{L} ? Give reasons.
(i) $\left(p_{3} \rightarrow p_{1}\right)$
(ii) $p_{1} \rightarrow p_{2} \rightarrow p_{3}$
(iii) $\left(\neg p_{5} \wedge \neg p_{6}\right)=\neg p_{11}$
(iv) $(p \leftrightarrow \neg p)$
(v) $\left(\left(p_{1} \vee \neg p_{1}\right) \rightarrow\left(\neg p_{2}\right)\right)$
(b) Prove carefully that for any formula ϕ, the number of left parentheses occuring in ϕ is equal to the number of right parentheses occuring in ϕ.
(2) (a) Prove that the length of a formula with exactly n occurences of the negation symbol and m occurrences of binary connectives is $4 m+n+1$. Check this for the formulas in question (1) (a).
(b) List all formulas of \mathcal{L} of length ≤ 6.
(3) Can a proper initial segment of a formula ever be a formula again? How about final proper segments?
(4) Prove the Unique Readability Theorem.

