6. A deductive system for propositional calculus

- We have indtroduced '*logical consequence*':
 Γ ⊨ φ − whenever (each formula of) Γ is true so is φ
- But we don't know yet how to give an actual proof of φ from the hypotheses Γ.
- A **proof** should be a finite sequence $\phi_1, \phi_2, \ldots, \phi_n$ of statements such that
 - either $\phi_i \in \Gamma$
 - or ϕ_i is some **axiom** (which should *clearly* be true)
 - or ϕ_i should follow from previous ϕ_j 's by some **rule of inference**
 - AND $\phi = \phi_n$

Lecture 5 - 1/8

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules:

Axioms

An **axiom** of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1 $(\alpha \rightarrow (\beta \rightarrow \alpha))$

A2
$$((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$$

A3
$$((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$

Rules of inference Only one: **modus ponens** (for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$) **MP** From α and $(\alpha \rightarrow \beta)$ infer β .

Lecture 5 - 2/8

6.2 Definition

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ we say that α is **deducible** (or **provable**) from the hypotheses Γ if there is a finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ such that for each $i = 1, \ldots, m$ either

(a) α_i is an axiom, or (b) $\alpha_i \in \Gamma$, or (c) there are j < k < i such that α_i follows from α_j, α_k by MP, i.e. $\alpha_j = (\alpha_k \to \alpha_i)$ or $\alpha_k = (\alpha_j \to \alpha_i)$ AND

(d) $\alpha_m = \alpha$.

The sequence $\alpha_1, \ldots, \alpha_m$ is then called a **proof** or **deduction** or **derivation** of α from Γ .

Write $\Gamma \vdash \alpha$.

If $\Gamma = \emptyset$ write $\vdash \alpha$ and say that α is a **theorem** (of the system L_0).

Lecture 5 - 3/8

6.3 Example For any $\phi \in Form(\mathcal{L}_0)$

 $(\phi \rightarrow \phi)$

is a theorem of L_0 .

Proof:

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \to \phi)$ in L_0 .

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$\{\phi,\neg\phi\}\vdash\psi$$

Proof:

$$\alpha_{1} (\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi))$$
[A1 with $\alpha = \neg \phi, \beta = \neg \psi$]

$$\alpha_{2} \neg \phi [\in \Gamma]$$

$$\alpha_{3} (\neg \psi \rightarrow \neg \phi) [MP \alpha_{1}, \alpha_{2}]$$

$$\alpha_{4} ((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi))$$
[A3 with $\alpha = \phi, \beta = \psi$]

$$\alpha_{5} (\phi \rightarrow \psi) [MP \alpha_{3}, \alpha_{4}]$$

$$\alpha_{6} \phi [\in \Gamma]$$

$$\alpha_{7} \psi [MP \alpha_{5}, \alpha_{6}]$$

6.5 The Soundness Theorem for *L*₀

 L_0 is **sound**, i.e. for any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha \in Form(\mathcal{L}_0)$:

if $\Gamma \vdash \alpha$ then $\Gamma \models \alpha$.

In particular, any theorem of L_0 is a tautology.

Proof:

Assume $\Gamma \vdash \alpha$ and let $\alpha_1, \alpha_2, \ldots, \alpha_m = \alpha$ be a deduction of α in L_0 .

Let v be any valuation such that $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$.

We have to show that $\tilde{v}(\alpha) = T$.

We show by induction on $i \leq m$ that

$$\widetilde{v}(\alpha_1) = \ldots = \widetilde{v}(\alpha_i) = T \quad (\star)$$

Lecture 5 - 6/8

i = 1

either α_1 is an axiom, so $\tilde{v}(\alpha_1) = T$ or $\alpha_1 \in \Gamma$, so, by hypothesis, $\tilde{v}(\alpha_1) = T$.

Induction step

Suppose (*) is true for some i < m. Consider α_{i+1} .

Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\tilde{v}(\alpha_{i+1}) = T$ as above,

or else there are $j \neq k < i + 1$ such that $\alpha_j = (\alpha_k \rightarrow \alpha_{i+1}).$

By induction hypothesis

 $\tilde{v}(\alpha_k) = \tilde{v}(\alpha_j) = \tilde{v}((\alpha_k \to \alpha_{i+1})) = T.$ But then, by tt \to , $\tilde{v}(\alpha_{i+1}) = T$ (since $T \to F$ is F).

For the proof of the converse

Completeness Theorem

If $\Gamma \models \alpha$ then $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Lecture 5 - 8/8