6. A deductive system for propositional calculus

- We have indtroduced '*logical consequence*': $\Gamma \models \phi$ – whenever (each formula of) Γ is true so is ϕ
- But we don't know yet how to give an actual proof of ϕ from the hypotheses Γ.
- A proof should be a finite sequence $\phi_1, \phi_2, \ldots, \phi_n$ of statements such that
	- $-$ either $\phi_i \in \Gamma$
	- $-$ or ϕ_i is some $\boldsymbol{\mathsf{axiom}}$ (which should *clearly* be true)
	- $-$ or ϕ_i should follow from previous ϕ_j 's by some rule of inference
	- AND $\phi = \phi_n$

Lecture 5 - 1/8

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the system L_0 consists of the following axioms and rules:

Axioms

An axiom of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1 $(\alpha \rightarrow (\beta \rightarrow \alpha))$

A2
$$
((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))
$$

A3
$$
((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))
$$

Rules of inference Only one: modus ponens (for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$) **MP** From α and $(\alpha \rightarrow \beta)$ infer β .

Lecture 5 - 2/8

6.2 Definition

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ we say that α is **de**ducible (or provable) from the hypotheses Γ if there is a finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ such that for each $i = 1, \ldots, m$ either

(a) α_i is an axiom, or (b) $\alpha_i \in \Gamma$, or (c) there are $j < k < i$ such that α_i follows from α_j, α_k by MP, i.e. $\alpha_j = (\alpha_k \rightarrow \alpha_i)$ or $\alpha_k = (\alpha_j \rightarrow \alpha_i)$ AND

(d) $\alpha_m = \alpha$.

The sequence $\alpha_1, \ldots, \alpha_m$ is then called a **proof** or deduction or derivation of α from Γ .

Write $\Gamma \vdash \alpha$.

If $\Gamma = \emptyset$ write $\vdash \alpha$ and say that α is a **theorem** (of the system L_0).

Lecture 5 - 3/8

6.3 Example For any $\phi \in \text{Form}(\mathcal{L}_0)$

 $(\phi \rightarrow \phi)$

is a theorem of L_0 .

Proof:

$$
\alpha_1 \ (\phi \to (\phi \to \phi))
$$
\n
$$
[A1 with \ \alpha = \beta = \phi]
$$
\n
$$
\alpha_2 \ (\phi \to ((\phi \to \phi) \to \phi))
$$
\n
$$
[A1 with \ \alpha = \phi, \ \beta = (\phi \to \phi)]
$$
\n
$$
\alpha_3 \ ((\phi \to ((\phi \to \phi) \to \phi)) \to
$$
\n
$$
\to ((\phi \to (\phi \to \phi)) \to (\phi \to \phi)))
$$
\n
$$
[A2 with \ \alpha = \phi, \ \beta = (\phi \to \phi), \ \gamma = \phi]
$$
\n
$$
\alpha_4 \ ((\phi \to (\phi \to \phi)) \to (\phi \to \phi))
$$
\n
$$
[MP \ \alpha_2, \alpha_3]
$$
\n
$$
\alpha_5 \ (\phi \to \phi)
$$
\n
$$
[MP \ \alpha_1, \alpha_4]
$$

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \rightarrow \phi)$ in L_0 .

 \Box

Lecture
$$
5 - 4/8
$$

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$
\{\phi,\neg\phi\} \vdash \psi
$$

Proof:

$$
\alpha_1 \left(\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \right)
$$

\n[A1 with $\alpha = \neg \phi, \beta = \neg \psi$]
\n
$$
\alpha_2 \neg \phi \in \Gamma
$$

\n
$$
\alpha_3 \left(\neg \psi \rightarrow \neg \phi \right) \text{[MP } \alpha_1, \alpha_2 \text{]}
$$

\n
$$
\alpha_4 \left(\left(\neg \psi \rightarrow \neg \phi \right) \rightarrow \left(\phi \rightarrow \psi \right) \right)
$$

\n[A3 with $\alpha = \phi, \beta = \psi$]
\n
$$
\alpha_5 \left(\phi \rightarrow \psi \right) \text{[MP } \alpha_3, \alpha_4 \text{]}
$$

\n
$$
\alpha_6 \phi \in \Gamma
$$

\n
$$
\alpha_7 \psi \text{[MP } \alpha_5, \alpha_6 \text{]}
$$

 \Box

6.5 The Soundness Theorem for L_0

 L_0 *is* sound, *i.e.* for any $Γ ⊆ Form(L_0)$ and *for any* $\alpha \in \text{Form}(\mathcal{L}_0)$:

if $\Gamma \vdash \alpha$ *then* $\Gamma \models \alpha$.

In particular, any theorem of L_0 *is a tautology.*

Proof:

Assume $\Gamma \vdash \alpha$ and let $\alpha_1, \alpha_2, \ldots, \alpha_m = \alpha$ be a deduction of α in L_0 .

Let v be any valuation such that $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$.

We have to show that $\tilde{v}(\alpha) = T$.

We show by induction on $i \leq m$ that

$$
\tilde{v}(\alpha_1) = \ldots = \tilde{v}(\alpha_i) = T \quad (*)
$$

Lecture 5 - 6/8

$i = 1$

either α_1 is an axiom, so $\tilde{v}(\alpha_1) = T$ or $\alpha_1 \in \Gamma$, so, by hypothesis, $\tilde{v}(\alpha_1) = T$.

Induction step

Suppose (\star) is true for some $i < m$. Consider α_{i+1} .

Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\tilde{v}(\alpha_{i+1}) = T$ as above,

or else there are $j \neq k < i + 1$ such that $\alpha_i = (\alpha_k \to \alpha_{i+1}).$

By induction hypothesis

 $\tilde{v}(\alpha_k) = \tilde{v}(\alpha_j) = \tilde{v}((\alpha_k \to \alpha_{i+1})) = T.$ But then, by tt \rightarrow , $\tilde{v}(\alpha_{i+1}) = T$ (since $T \to F$ is F).

 \Box

Lecture
$$
5 - 7/8
$$

For the proof of the converse

Completeness Theorem

If $\Gamma \models \alpha$ *then* $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ *and for any* $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$ *:*

if $\Gamma \cup \{\alpha\} \vdash \beta$ *then* $\Gamma \vdash (\alpha \rightarrow \beta)$ *.*

Lecture 5 - 8/8