6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Proof:

We prove by induction on m:

if $\alpha_1, \ldots, \alpha_m$ is derivable in L_0 from the hypotheses $\Gamma \cup \{\alpha\}$ **then** for all $i \leq m$ $(\alpha \rightarrow \alpha_i)$ is derivable in L_0 from the hypotheses Γ .

m=1

Either α_1 is an Axiom or $\alpha_1 \in \Gamma \cup \{\alpha\}$.

Lecture 6 - 1/8

Case 1: α_1 is an Axiom Then

$$\begin{array}{ll}1 & \alpha_1 & [Axiom]\\2 & (\alpha_1 \rightarrow (\alpha \rightarrow \alpha_1)) & [Instance of A1]\\3 & (\alpha \rightarrow \alpha_1) & [MP 1,2]\end{array}$$

is a derivation of $(\alpha \rightarrow \alpha_1)$ from hypotheses \emptyset .

Note that if $\Delta \vdash \psi$ and $\Delta \subseteq \Delta'$, then obviously $\Delta' \vdash \psi$.

Thus $(\alpha \rightarrow \alpha_1)$ is derivable in L_0 from hypotheses Γ .

Case 2: $\alpha_1 \in \Gamma \cup \{\alpha\}$ If $\alpha_1 \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma$ ').

If $\alpha_1 = \alpha$, then, by Example 6.3, $\vdash (\alpha \rightarrow \alpha_1)$, hence $\Gamma \vdash (\alpha \rightarrow \alpha_1)$.

Lecture 6 - 2/8

Induction Step

IH: Suppose result is true for derivations of length $\leq m$.

Let $\alpha_1, \ldots, \alpha_{m+1}$ be a derivation in L_0 from $\Gamma \cup \{\alpha\}$.

Then either α_{m+1} is an axiom or $\alpha_{m+1} \in \Gamma \cup \{\alpha\}$ – in these cases proceed as above, even without IH.

Or α_{m+1} is obtained by MP from some earlier α_j, α_k , i.e. there are j, k < m + 1 such that $\alpha_j = (\alpha_k \to \alpha_{m+1}).$

By IH, we have

$$\begin{array}{ll} \Gamma \vdash (\alpha \rightarrow \alpha_k) \\ \text{and} & \Gamma \vdash (\alpha \rightarrow \alpha_j), \\ \text{so} & \Gamma \vdash (\alpha \rightarrow (\alpha_k \rightarrow \alpha_{m+1})) \end{array} \end{array}$$

Lecture 6 - 3/8

Let β_1, \ldots, β_r be a derivation in L_0 of $(\alpha \to \alpha_k) = \beta_r$ from Γ

and let $\gamma_1, \ldots, \gamma_s$ be a derivation in L_0 of $(\alpha \to (\alpha_k \to \alpha_{m+1})) = \gamma_s$ from Γ .

Then

$$\begin{array}{lll} 1 & \beta_{1} \\ \vdots & \vdots \\ r-1 & \beta_{r-1} \\ r & (\alpha \to \alpha_{k}) \\ r+1 & \gamma_{1} \\ \vdots & \vdots \\ r+s-1 & \gamma_{s-1} \\ r+s & (\alpha \to (\alpha_{k} \to \alpha_{m+1})) \\ r+s+1 & ((\alpha \to (\alpha_{k} \to \alpha_{m+1})) \to \\ & ((\alpha \to \alpha_{k}) \to (\alpha \to \alpha_{m+1}))) & [A2] \\ r+s+2 & ((\alpha \to \alpha_{k}) \to (\alpha \to \alpha_{m+1})) & [MP r+s, r+s+1] \\ r+s+3 & (\alpha \to \alpha_{m+1}) & [MP r, r+s+2] \end{array}$$

is a derivation of $(\alpha \rightarrow \alpha_{m+1})$ in L_0 from Γ . \Box Lecture 6 - 4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
 So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise **algorithm** for converting any derivation showing $\Gamma \cup \{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash (\alpha \rightarrow \beta)$.
- Converse is easy:

If $\Gamma \vdash (\alpha \rightarrow \beta)$ then $\Gamma \cup \{\alpha\} \vdash \beta$. *Proof:*

÷	:	derivation from Γ
r	$\alpha \rightarrow \beta$	
r+1	lpha	$[\in \Gamma \cup \{\alpha\}]$
r+2	eta	[MP r, r+1]

Lecture 6 - 5/8

6.8 Example of use of DT

If $\Gamma \vdash (\alpha \rightarrow \beta)$ and $\Gamma \vdash (\beta \rightarrow \gamma)$ then $\Gamma \vdash (\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup \{\alpha\} \vdash \gamma$.

÷	:	proof from Γ
r	$(\alpha \rightarrow \beta)$	
r+1	÷	
÷	:	proof from Γ
r+s	$(\beta ightarrow \gamma)$	
r+s+1	lpha	$[\in \Gamma \cup \{\alpha\}]$
r+s+2	eta	[MP r, r+s+1]
r+s+3	γ	[MP r+s, r+s+2]

From now on we may treat DT as an additional inference rule in L_0 .

Lecture 6 - 6/8

6.9 Definition

The **sequent calculus** SQ is the system where a **proof** (or **derivation**) of $\phi \in \text{Form}(\mathcal{L}_0)$ from $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is a finite sequence of **sequents**, i.e. of expressions of the form

 $\Delta \vdash_{SQ} \psi$

with $\Delta \subseteq \operatorname{Form}(\mathcal{L}_0)$ and $\Gamma \vdash_{SQ} \phi$ as last sequent.

Sequents may be formed according to the following rules

Ass: if $\psi \in \Delta$ then infer $\Delta \vdash_{SQ} \psi$

- **MP:** from $\Delta \vdash_{SQ} \psi$ and $\Delta' \vdash_{SQ} (\psi \to \chi)$ infer $\Delta \cup \Delta' \vdash_{SQ} \chi$
- **DT:** from $\Delta \cup \{\psi\} \vdash_{SQ} \chi$ infer $\Delta \vdash_{SQ} (\psi \to \chi)$
- **PC:** from $\Delta \cup \{\neg \psi\} \vdash_{SQ} \chi$ and $\Delta' \cup \{\neg \psi\} \vdash_{SQ} \neg \chi$ infer $\Delta \cup \Delta' \vdash_{SQ} \psi$

'PC' stands for *proof by contradiction*' **Note:** no axioms.

Lecture 6 - 7/8

6.10 Example of a proof in SQ

$$1 \quad \neg\beta \vdash_{SQ} \neg\beta \qquad [Ass]$$

$$2 \quad (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\neg\beta \rightarrow \neg\alpha) \qquad [Ass]$$

$$3 \quad (\neg\beta \rightarrow \neg\alpha), \neg\beta \vdash_{SQ} \neg\alpha \qquad [MP \ 1,2]$$

$$4 \quad \alpha, \neg\beta \vdash_{SQ} \alpha \qquad [Ass]$$

$$5 \quad (\neg\beta \rightarrow \neg\alpha), \alpha \vdash_{SQ} \beta \qquad [PC \ 3,4]$$

$$6 \quad (\neg\beta \rightarrow \neg\alpha) \vdash_{SQ} (\alpha \rightarrow \beta) \qquad [DT \ 5]$$

$$7 \quad \vdash_{SQ} ((\neg\beta \rightarrow \neg\alpha) \rightarrow (\alpha \rightarrow \beta)) \qquad [DT \ 6]$$

So \vdash_{SQ} A3.

We'd better write ' $\Gamma \vdash_{L_0} \phi$ ' for ' $\Gamma \vdash \phi$ in L_0 '.

6.11 Theorem

 L_0 and SQ are equivalent: for all Γ, ϕ

$$\Gamma \vdash_{L_0} \phi \text{ iff } \Gamma \vdash_{SQ} \phi.$$

Proof: Exercise

Lecture 6 - 8/8