6.6 The Deduction Theorem for L_0

For any $\Gamma \subset \text{Form}(\mathcal{L}_0)$ and for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$:

if $\Gamma \cup \{\alpha\} \vdash \beta$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.

Proof:

We prove by induction on m :

if $\alpha_1, \ldots, \alpha_m$ is derivable in L_0 from the hypotheses $\Gamma \cup \{\alpha\}$ then for all $i \leq m$ $(\alpha \rightarrow \alpha_i)$ is derivable in L_0 from the hypotheses Γ.

$m=1$

Either α_1 is an Axiom or $\alpha_1 \in \Gamma \cup \{\alpha\}.$

Lecture 6 - 1/8

Case 1: α_1 is an Axiom Then

1
$$
\alpha_1
$$
 [Axiom]
\n2 $(\alpha_1 \rightarrow (\alpha \rightarrow \alpha_1))$ [Instance of A1]
\n3 $(\alpha \rightarrow \alpha_1)$ [MP 1,2]

is a derivation of $(\alpha \rightarrow \alpha_1)$ from hypotheses \emptyset .

Note that if $\Delta \vdash \psi$ and $\Delta \subseteq \Delta'$, then obviously $\Delta' \vdash \psi.$

Thus $(\alpha \rightarrow \alpha_1)$ is derivable in L_0 from hypotheses Γ.

Case 2: $\alpha_1 \in \Gamma \cup \{\alpha\}$ If $\alpha_1 \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma'$).

If $\alpha_1 = \alpha$, then, by Example 6.3, $\vdash (\alpha \rightarrow \alpha_1)$, hence $\Gamma \vdash (\alpha \rightarrow \alpha_1)$.

Lecture 6 - 2/8

Induction Step

IH: Suppose result is true for derivations of length $\leq m$.

Let $\alpha_1, \ldots, \alpha_{m+1}$ be a derivation in L_0 from $Γ ∪ {α}.$

Then **either** α_{m+1} is an axiom or $\alpha_{m+1} \in \Gamma \cup \{\alpha\}$ – in these cases proceed as above, even without IH.

Or α_{m+1} is obtained by MP from some earlier α_j, α_k , i.e. there are $j,k\,<\,m+1$ such that $\alpha_j = (\alpha_k \rightarrow \alpha_{m+1}).$

By IH, we have

and
$$
\Gamma \vdash (\alpha \rightarrow \alpha_k)
$$

so $\Gamma \vdash (\alpha \rightarrow \alpha_j)$,
so $\Gamma \vdash (\alpha \rightarrow (\alpha_k \rightarrow \alpha_{m+1}))$

Lecture 6 - 3/8

Let
$$
\beta_1, ..., \beta_r
$$
 be a derivation in L_0 of $(\alpha \rightarrow \alpha_k) = \beta_r$ from Γ

and let $\gamma_1, \ldots, \gamma_s$ be a derivation in L_0 of $(\alpha \rightarrow (\alpha_k \rightarrow \alpha_{m+1})) = \gamma_s$ from Γ .

Then

1
$$
\beta_1
$$

\n \vdots \vdots
\nr-1 β_{r-1}
\nr $(\alpha \to \alpha_k)$
\nr+1 γ_1
\n \vdots \vdots
\nr+s-1 γ_{s-1}
\nr+s $(\alpha \to (\alpha_k \to \alpha_{m+1}))$
\nr+s+1 $((\alpha \to (\alpha_k \to \alpha_{m+1})) \to$
\n $((\alpha \to \alpha_k) \to (\alpha \to \alpha_{m+1})))$ [A2]
\nr+s+2 $((\alpha \to \alpha_k) \to (\alpha \to \alpha_{m+1}))$ [MP r+s, r+s+1]
\nr+s+3 $(\alpha \to \alpha_{m+1})$ [MP r, r+s+2]

is a derivation of $(\alpha \rightarrow \alpha_{m+1})$ in L_0 from Γ . \Box Lecture 6 - 4/8

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP. So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise algorithm for converting any derivation showing $\Gamma \cup \{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash (\alpha \rightarrow \beta)$.
- Converse is easy:

If $\Gamma \vdash (\alpha \rightarrow \beta)$ then $\Gamma \cup {\alpha} \vdash \beta$. Proof:

> derivation from Γ r $\alpha \rightarrow \beta$ r+1 α $[\in \Gamma \cup {\alpha}]$ $r+2$ β [MP r, r+1]

> > \Box

Lecture 6 - 5/8

6.8 Example of use of DT

If $\Gamma \vdash (\alpha \rightarrow \beta)$ and $\Gamma \vdash (\beta \rightarrow \gamma)$ then $\Gamma \vdash (\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\Gamma \cup \{\alpha\} \vdash \gamma$.

From now on we may treat DT as an additional inference rule in L_0 .

Lecture 6 - 6/8

 \Box

6.9 Definition

The sequent calculus SQ is the system where a **proof** (or **derivation**) of $\phi \in \text{Form}(\mathcal{L}_0)$ from $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is a finite sequence of **sequents**, i.e. of expressions of the form

 $\Delta \vdash_{SO} \psi$

with $\Delta \subseteq \text{Form}(\mathcal{L}_0)$ and $\Gamma \vdash_{SQ} \phi$ as last sequent.

Sequents may be formed according to the following rules

Ass: if $\psi \in \Delta$ then infer $\Delta \vdash_{SQ} \psi$

- **MP:** from $\Delta \vdash_{SQ} \psi$ and $\Delta' \vdash_{SQ} (\psi \rightarrow \chi)$ infer $\Delta \cup \Delta' \vdash_{SQ} \chi$
- **DT:** from $\Delta \cup {\psi} \vdash_{SQ} \chi$ infer $\Delta \vdash_{SQ} (\psi \rightarrow \chi)$
- **PC:** from $\Delta \cup \{\neg \psi\} \vdash_{SO} \chi$ and $\Delta' \cup \{\neg \psi\} \vdash_{SQ} \neg \chi$ infer $\Delta \cup \Delta' \vdash_{SQ} \psi$

'PC' stands for proof by contradiction' Note: no axioms.

Lecture 6 - 7/8

6.10 Example of a proof in SQ

$$
1 \quad \neg \beta \vdash_{SQ} \neg \beta \qquad \qquad [Ass]
$$
\n
$$
2 \quad (\neg \beta \rightarrow \neg \alpha) \vdash_{SQ} (\neg \beta \rightarrow \neg \alpha) \qquad [Ass]
$$
\n
$$
3 \quad (\neg \beta \rightarrow \neg \alpha), \neg \beta \vdash_{SQ} \neg \alpha \qquad \qquad [MP 1, 2]
$$
\n
$$
4 \quad \alpha, \neg \beta \vdash_{SQ} \alpha \qquad \qquad [Ass]
$$
\n
$$
5 \quad (\neg \beta \rightarrow \neg \alpha), \alpha \vdash_{SQ} \beta \qquad \qquad [PC 3, 4]
$$
\n
$$
6 \quad (\neg \beta \rightarrow \neg \alpha) \vdash_{SQ} (\alpha \rightarrow \beta) \qquad [DT 5]
$$
\n
$$
7 \quad \vdash_{SQ} ((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)) \qquad [DT 6]
$$
\n
$$
\vdash_{QQ} A3
$$

So \vdash_{SQ} A3.

We'd better write ' $\Gamma\vdash_{L_0}\phi'$ for ' $\Gamma\vdash\phi$ in L_0 '.

6.11 Theorem

L₀ and SQ are equivalent: for all $Γ, φ$

$$
\Gamma\vdash_{L_0}\phi\ if f\Gamma\vdash_{SQ}\phi.
$$

Proof: Exercise

Lecture 6 - 8/8