7. Consistency, Completeness and Compactness

7.1 Definition

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$. Γ is said to be **consistent** (or \mathcal{L}_0 -consistent) if for *no* formula α both $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.

Otherwise Γ is **inconsistent**.

E.g. \emptyset is consistent: by soundness theorem, α and $\neg \alpha$ are never simultaneously true.

7.2. Lemma

 $\Gamma \cup \{\neg \phi\}$ is inconsistent iff $\Gamma \vdash \phi$. (In part., if $\Gamma \not\vdash \phi$ then $\Gamma \cup \{\neg \phi\}$ is consistent). Proof: ' \Leftarrow ':

 $\begin{array}{c} \Gamma \vdash \phi \Rightarrow \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash \phi \\ \Gamma \cup \{\neg \phi\} \vdash \neg \phi \end{array} \end{array} \right\} \Rightarrow \begin{array}{c} \Gamma \cup \{\neg \phi\} \\ \text{is inconsistent} \end{array} \\ \begin{array}{c} \bullet \end{pmatrix} \\ \bullet \end{array} \\ \begin{array}{c} \bullet \\ \Gamma \cup \{\neg \phi\} \vdash \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\} \Rightarrow_{6.11} \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash_{SQ} \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\}$

$$\Rightarrow_{\mathsf{PC}} \ \mathsf{\Gamma} \vdash_{SQ} \phi \ \Rightarrow_{6.11} \ \mathsf{\Gamma} \vdash \phi$$

 \square

Lecture 7 - 1/9

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$. Then $\Gamma \cup \{\phi\}$ is consistent.

Proof: Suppose not, i.e. for some α

$$\begin{array}{c} \Gamma \cup \{\phi\} \vdash \alpha \\ \Gamma \cup \{\phi\} \vdash \neg \alpha \end{array} \end{array} \right\} \Rightarrow_{\mathsf{DT}} \begin{array}{c} \Gamma \vdash (\phi \to \alpha) \\ \Gamma \vdash (\phi \to \neg \alpha) \end{array} \right\} \begin{array}{c} \Gamma \vdash \phi \\ \Rightarrow \mathsf{MP} \end{array} \\ \\ \Rightarrow \begin{array}{c} \Gamma \vdash \alpha \\ \Gamma \vdash \neg \alpha \end{array} \end{array}$$

7.4 Definition

 $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ is **maximal consistent** if (i) Γ is consistent, and (ii) for *every* ϕ , either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

Note: This is equivalent to saying that for every ϕ , if $\Gamma \cup \{\phi\}$ is consistent then $\Gamma \vdash \phi$. *Proof:* Exercise

Lecture 7 - 2/9

7.5 Lemma

Suppose Γ is maximal consistent. Then for every $\psi, \chi \in Form(\mathcal{L}_0)$ (a) $\Gamma \vdash \neg \psi$ iff $\Gamma \not\vdash \psi$ (b) $\Gamma \vdash (\psi \rightarrow \chi)$ iff either $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$. Proof:

(a) '⇒': by consistency
'⇐': by maximality

(b) '
$$\Rightarrow$$
': Suppose $\Gamma \not\vdash \neg \psi$ and $\Gamma \not\vdash \chi$
 $\Rightarrow \Gamma \vdash \psi$ and $\Gamma \vdash \neg \chi$
 $\Gamma \vdash (\psi \rightarrow \chi) \Rightarrow_{\mathsf{MP}} \Gamma \vdash \chi$)

'⇐': Suppose Γ⊢¬
$$\psi$$

Γ⊢(¬ ψ → (ψ → χ)) - Problems \sharp 2, (5)(i)
⇒_{MP} Γ⊢(ψ → χ)

Suppose
$$\Gamma \vdash \chi$$

 $\Gamma \vdash (\chi \rightarrow (\psi \rightarrow \chi))$ - Axiom A1
 $\Rightarrow_{\mathsf{MP}} \Gamma \vdash (\psi \rightarrow \chi)$

Lecture 7 - 3/9

7.6 Theorem

Suppose Γ is maximal consistent. Then Γ is satisfiable.

Proof:

For each i, $\Gamma \vdash p_i$ or $\Gamma \vdash \neg p_i$ (by maximality), but not both (by consistency)

Define a valuation \boldsymbol{v} by

$$v(p_i) = \begin{cases} T & \text{if } \Gamma \vdash p_i \\ F & \text{if } \Gamma \vdash \neg p_i \end{cases}$$

Claim: for all $\phi \in \text{Form}(\mathcal{L}_0)$:

$$\widetilde{v}(\phi) = T \text{ iff } \Gamma \vdash \phi$$

Proof by induction on the length n of ϕ :

n=1:

Then $\phi = p_i$ for some *i*, and so, by def. of *v*,

$$\widetilde{v}(p_i) = T$$
 iff $\Gamma \vdash p_i$.

Lecture 7 - 4/9

IH: Claim true for all $i \leq n$.

Now assume length $(\phi) = n+1$

Case 1:
$$\phi = \neg \psi$$
 (\Rightarrow length (ψ) = n)
 $\tilde{v}(\phi) = T$ iff $\tilde{v}(\psi) = F$ tt \neg
iff $\Gamma \not\vdash \psi$ IH
iff $\Gamma \vdash \neg \psi$ 7.5(a)
iff $\Gamma \vdash \phi$

Case 2:
$$\phi = (\psi \to \chi)$$

(\Rightarrow length (ψ), length (χ) \leq n)
 $\tilde{v}(\phi) = T$ iff $\tilde{v}(\psi) = F$ or $\tilde{v}(\chi) = T$ tt \rightarrow
iff $\Gamma \not\vdash \psi$ or $\Gamma \vdash \chi$ IH
iff $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$ 7.5(a)
iff $\Gamma \vdash (\psi \to \chi)$ 7.5(b)
iff $\Gamma \vdash \phi$

So $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ .

Lecture 7 - 5/9

7.7 Theorem

Suppose Γ is consistent. Then there is a maximal consistent Γ' such that $\Gamma \subseteq \Gamma'$.

Proof:

 $Form(\mathcal{L}_0)$ is countable, say

Form
$$(\mathcal{L}_0) = \{\phi_1, \phi_2, \phi_3, \ldots\}.$$

Construct consistent sets

$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$$

as follows: $\Gamma_0 := \Gamma$.

Having constructed Γ_n consistently, let

$$\Gamma_{n+1} := \begin{cases} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Gamma_n \vdash \phi_{n+1} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{if } \Gamma_n \not\vdash \phi_{n+1} \end{cases}$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Lecture 7 - 6/9

Now let $\Gamma' := \bigcup_{n=0}^{\infty} \Gamma_n$.

Then Γ' is consistent:

Any proof of $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ would use only finitely many formulas from Γ' , so for some $n, \ \Gamma_n \vdash \alpha$ and $\Gamma_n \vdash \neg \alpha$ – contradicting the consistency of Γ_n .

Finally, Γ' is maximal (even in a stronger sense): for all n, either $\phi_n \in \Gamma'$ or $\neg \phi_n \in \Gamma'$. \Box

Note that the proof does not make use of Zorn's Lemma.

7.8 Corollary

If Γ is consistent then Γ is satisfiable.

Proof: 7.6 + 7.7 □

Lecture 7 - 7/9

7.9 The Completeness Theorem If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\Gamma \models \phi$, but $\Gamma \not\vdash \phi$.

⇒ by 7.2, $\Gamma \cup \{\neg \phi\}$ is consistent ⇒ by 7.8, there is some valuation v such that $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma \cup \{\neg \phi\}$ ⇒ $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$, but $\tilde{v}(\phi) = F$ ⇒ $\Gamma \not\models \phi$: contradiction. \Box

7.10 Corollary
(7.9 Completeness + 6.5 Soundness)

 $\Gamma \models \phi \text{ iff } \Gamma \vdash \phi$

Lecture 7 - 8/9

7.11 The Compactness Theorem for L_0

 $\Gamma \subseteq Form(\mathcal{L}_0)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: ' \Rightarrow ': obvious – if $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma' \subseteq \Gamma$.

'⇐':

Suppose every finite $\Gamma' \subseteq \Gamma$ is satisfiable, but Γ is not.

Then, by 7.8, Γ is inconsistent, i.e. $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ for some α .

But then, for some finite $\Gamma' \subseteq \Gamma$: $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ $\Rightarrow \Gamma' \models \alpha$ and $\Gamma' \models \neg \alpha$ (by soundness) $\Rightarrow \Gamma'$ not satisfiable: contradiction.

Lecture 7 - 9/9