4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are logically equivalent if $\phi \models \psi$ and $\psi \models \phi$,
i.e. if for every valuation $v, \widetilde{v}(\phi)=\widetilde{v}(\psi)$.

Notation: $\phi==\psi$
Exercise $\phi==\psi$ if and only if $\models(\phi \leftrightarrow \psi)$
4.2 Lemma
(i) For any formulas ϕ, ψ

$$
(\phi \vee \psi) \models=\neg(\neg \phi \wedge \neg \psi)
$$

(ii) Hence every formula is logically equivalent to one without ' \vee '.

Proof:
(i) Either use truth tables
or observe that, for any valuation v :

$$
\begin{array}{ll}
\text { iff } \begin{array}{ll}
\widetilde{v}(\neg(\neg \phi \wedge \neg \psi))=F & \\
\text { iff } \widetilde{v}(\neg \phi) \neg \psi))=T & \text { by tt } \neg \widetilde{v}(\neg \psi)=T
\end{array} & \text { by tt } \wedge \\
\text { iff } \widetilde{v}(\phi)=\widetilde{v}(\psi)=F & \text { by tt } \neg \\
\text { iff } \widetilde{v}(\phi \vee \psi)=F & \text { by tt } \vee
\end{array}
$$

(ii) Induction on the length of the formula ϕ :

Clear for lenght 1
For the induction step observe that

$$
\text { If } \psi \models==\psi^{\prime} \text { then } \neg \psi \models=\neg \psi^{\prime}
$$

and
If $\phi \models=\phi^{\prime}$ and $\psi \models==\psi^{\prime}$ then $(\phi \star \psi) \models=\left(\phi^{\prime} \star \psi^{\prime}\right)$, where \star is any binary connective.
(Use (i) if $\star=v$)

4.3 Some sloppy notation

We are only interested in formulas
up to logical equivalence:
If A, B, C are formulas then

$$
((A \vee B) \vee C) \text { and }(A \vee(B \vee C))
$$

are different formulas, but logically equivalent. So here - up to logical equivalene bracketting doesn't matter. Hence

- Write $(A \vee B \vee C)$ or even $A \vee B \vee C$ instead.
- More generally, if A_{1}, \ldots, A_{n} are formulas, write $A_{1} \vee \ldots \vee A_{n}$ or $\bigvee_{i=1}^{n} A_{i}$ for some (any) correctly bracketed version.
- Similarly $\bigwedge_{i=1}^{n} A_{i}$.

4.4 Some logical equivalences

Let A, B, A_{i} be formulas. Then

1. $\neg(A \vee B) \models=(\neg A \wedge \neg B)$

So, inductively,

$$
\neg \bigvee_{i=1}^{n} A_{i} \models==\bigwedge_{i=1}^{n} \neg A_{i}
$$

This is called De Morgan's Laws.
2. like 1. with \vee and \wedge swapped everywhere
3. $(A \rightarrow B) \vDash=(\neg A \vee B)$
4. $(A \vee B) \models=((A \rightarrow B) \rightarrow B)$
5. $(A \leftrightarrow B) \models=((A \rightarrow B) \wedge(B \rightarrow A))$

5. Adequacy of the Connectives

The connectives \neg (unary) and $\rightarrow, \wedge, \vee, \leftrightarrow$ (binary) are the logical part of our language for propositional calculus.

Question:

- Do we have enough connectives?
- Can we express everything which is logically conceivable using only these connectives?
- Does our language \mathcal{L} recover all potential truth tables?

Answer: yes
Lecture 4-5/12

5.1 Definition

(i) We denote by V_{n} the set of all functions

$$
v:\left\{p_{0}, \ldots, p_{n-1}\right\} \rightarrow\{T, F\}
$$

i.e. of all partial valuations, only assigning values to the first n propositional variables. Hence $\sharp V_{n}=2^{n}$.
(ii) An n-ary truth function is a function

$$
J: V_{n} \rightarrow\{T, F\}
$$

There are precisely $2^{2^{n}}$ such functions.
(iii) If a formula $\phi \in \operatorname{Form}(\mathcal{L})$ contains only prop. variables from the set $\left\{p_{0}, \ldots, p_{n-1}\right\}$ - write ' $\phi \in \operatorname{Form}_{n}(\mathcal{L})$ ' then ϕ determines the truth function

$$
\begin{aligned}
J_{\phi}: V_{n} & \rightarrow\{T, F\} \\
v & \mapsto \widetilde{v}(\phi)
\end{aligned}
$$

i.e. J_{ϕ} is given by the truth table for ϕ.

5.2 Theorem

Our language \mathcal{L} is adequate,
i.e. for every n and every truth function
$J: V_{n} \rightarrow\{T, F\}$ there is some $\phi \in \operatorname{Form}_{n}(\mathcal{L})$
with $J_{\phi}=J$.
(In fact, we shall only use the connectives \neg, \wedge, \vee.)

Proof: Let $J: V_{n} \rightarrow\{T, F\}$ be any n-ary truth function.

If $J(v)=F$ for all $v \in V_{n}$ take $\phi:=\left(p_{0} \wedge \neg p_{0}\right)$.
Then, for all $v \in V_{n}: J_{\phi}(v)=\widetilde{v}(\phi)=F=J(v)$.

Otherwise let $U:=\left\{v \in V_{n} \mid J(v)=T\right\} \neq \emptyset$.
For each $v \in U$ and each $i<n$ define the formula

$$
\psi_{i}^{v}:=\left\{\begin{array}{rll}
p_{i} & \text { if } & v\left(p_{i}\right)=T \\
\neg p_{i} & \text { if } & v\left(p_{i}\right)=F
\end{array}\right.
$$

and let $\psi^{v}:=\bigwedge_{i=0}^{n-1} \psi_{i}^{v}$.

Then for any valuation $w \in V_{n}$ one has the following equivalence (\star):

$$
\begin{array}{lll}
\widetilde{w}\left(\psi^{v}\right)=T & \text { iff } \begin{array}{ll}
\text { for all } i<n: & (\text { by tt } \wedge) \\
& \text { iff }\left(\psi_{i}^{v}\right)=T
\end{array} & \text { (by def. of } \left.\psi_{i}^{v}\right)
\end{array}
$$

Now define $\phi:=\bigvee_{v \in U} \psi^{v}$.

Then for any valuation $w \in V_{n}$:

$$
\begin{array}{ll}
\tilde{w}(\phi)=T & \text { iff for some } v \in U: \widetilde{w}\left(\psi^{v}\right)=T \\
& \text { iff for some } v \in U: w=v \\
& \text { iff } w \in U \\
& \text { iff } J(w)=T
\end{array}
$$

Hence for all $w \in V_{n}: J_{\phi}(w)=J(w)$, i.e. $J_{\phi}=$ J.

5.3 Definition

(i) A formula which is a conjunction of p_{i} 's and $\neg p_{i}$'s is called a conjunctive clause - e.g. ψ^{v} in the proof of 5.2
(ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')

- e.g. ϕ in the proof of 5.2

So we have, in fact, proved the following Corollary:

5.4 Corollary - 'The dnf-Theorem'

For any truth function

$$
J: V_{n} \rightarrow\{T, F\}
$$

there is a formula $\phi \in \operatorname{Form}_{n}(\mathcal{L})$ in dnf with $J_{\phi}=J$.

In particular, every formula is logically equivalent to one in dnf.

5.5 Definition

Suppose S is a set of (truth-functional) connectives - so each $s \in S$ is given by some truth table.
(i) Write $\mathcal{L}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \wedge, \vee, \leftrightarrow\}$ and define Form $(\mathcal{L}[S])$ and Form $n(\mathcal{L}[S])$ accordingly.
(ii) We say that S is adequate (or truth functionally complete) if for all $n \geq 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_{n}(\mathcal{L}[S])$ with $J_{\phi}=J$.

5.6 Examples

1. $S=\{\neg, \wedge, \vee\}$ is adequate (Theorem 5.2)
2. Hence, by Lemma 4.2(i), $S=\{\neg, \wedge\}$ is adequate:

$$
\phi \vee \psi \models=\neg(\neg \phi \wedge \neg \psi)
$$

Similarly, $S=\{\neg, \vee\}$ is adequate:

$$
\phi \wedge \psi \models=\neg(\neg \phi \vee \neg \psi)
$$

3. Can express \vee in terms of \rightarrow, so $\{\neg, \rightarrow\}$ is adequate (Problem sheet $\sharp 2$).
4. $S=\{\vee, \wedge, \rightarrow\}$ is not adequate, because any $\phi \in \operatorname{Form}(\mathcal{L}[S])$ has T in the top row of tt ϕ, so no such ϕ gives $J_{\phi}=J_{\neg p_{0}}$.
5. There are precisely two binary connectives, say \uparrow and \downarrow such that $S=\{\uparrow\}$ and $S=\{\downarrow\}$ are adequate.
