4. Logical Equivalence

4.1 Definition
Two formulas ¢, are logically equivalent

if ¢ = and ¢ = ¢,
i.e. if for every valuation v, v(¢) = v(v).
Notation: ¢ ==

Exercise ¢ == v if and only if = (¢ < v)

4.2 Lemma
(i) For any formulas ¢,

(V) == (=9 A=)

(ii) Hence every formula is logically equivalent
to one without ‘V'.
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Proof:

(i) Either use truth tables
or observe that, for any valuation v:

0(=(~p A1) =F
iff 5((mpA—)) =T by tt —
iff 9(=¢) =o(—) =T by tt A
iff 9(¢) =v(p) =F by tt -
iff 9(pV)=F by tt Vv

(ii) Induction on the length of the formula ¢:
Clear for lenght 1

For the induction step observe that
If ¢ == ¢ then — == '
and
If ¢ == ¢’ and ¢ == ¢’ then (¢xp) == (¢'*y"),
where x IS any binary connective.
(Use (i) if x=1V)
O
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4.3 Some sloppy notation

We are only interested in formulas
up to logical equivalence:

If A, B,C are formulas then

((AvB)vV(C) and (Av(BV())

are different formulas, but logically equivalent.
So here - up to logical equivalene -
bracketting doesn’'t matter.

Hence

e Write (AVBVC) or even AV BV C instead.

e More generally, if A1,..., A, are formulas,
write A1 V...V Ap or Vi, A;
for some (any) correctly bracketed version.

e Similarly AT A;.
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4.4 Some logical equivalences

Let A, B, A; be formulas. Then

1. =(AV B) == (mAN-B)
So, inductively,

n

mn
This is called De Morgan’s Laws.

2. like 1. with v and A swapped everywhere

3. (A— B) == (mAV B)
4. (AvB) == ((A— B) —» B)
5. (A< B)== ((A— B)AN(B— A))
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5. Adequacy of the Connectives

The connectives — (unary) and
—, A\, V, <+ (binary) are the logical part of our
language for propositional calculus.

Question:
e Do we have enough connectives?

e Can we express everything which is logically
conceivable using only these connectives?

e Does our language L recover all potential
truth tables?

Answer: yes
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5.1 Definition

(i) We denote by V,, the set of all functions

v {pos P} — {T,F)

i.e. of all partial valuations, only assigning

values to the first n propositional variables.
Hence #V,, = 2".

(ii) An n-ary truth function is a function

J: Vo = {T,F}
There are precisely 22" such functions.

(iit) If a formula ¢ € Form(L£) contains only
prop. variables from the set {pg,...,Pn—1}
— write ‘¢ € Formy (L)' —
then ¢ determines the truth function

Jp: Vo — {T,F}
v — (o)
i.e. J¢ is given by the truth table for ¢.
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5.2 Theorem

OQur language L is adequate,

i.e. for every n and every truth function

J: Vpn — {T,F} there is some ¢ € Formy,(L)
with Jgy = J.

(In fact, we shall only use the connectives —, A\, V.)

Proof: Let J: Vi, — {T,F} be any n-ary truth
function.

If J(v) = F for all v eV, take ¢ := (pg A —pg).
Then, for all v € Vi Jy(v) = v(¢) = F = J(v).

Otherwise let U :={v eV, | J(v) =T} # 0.
For each v € U and each 7 < n define the for-
mula

’ —p; if v(p;) = F

and let ¥? = /\?:_3 P

Lecture 4 - 7/12



Then for any valuation w € Vj, one has the
following equivalence (x):

G(WY) =T iff fé)(rﬁ')' i:<T”: (by tt A)

iff w=v (by def. of ¥?)
Now define ¢ := \,cpy ¥°.

Then for any valuation w € Vj:

w(p) =T iff forsomeveU: w(@W?¥) =T (by ttv
iff for someveU:w=wv (by (%),
iff welU
iff J(w)=T

Hence for all w € V! Jy(w) = J(w), i.e. Jy =

J.
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5.3 Definition

(i) A formula which is a conjunction of p;’'s
and —p;’'s is called a conjunctive clause
- e.g. Y¥ in the proof of 5.2

(ii) A formula which is a disjunction of con-
junctive clauses is said to be in
disjunctive normal form (‘dnf’)

- e.g. ¢ in the proof of 5.2

So we have, in fact, proved the following Corol-
lary:
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5.4 Corollary - ‘The dnf-Theorem’
For any truth function

J: Vp = {1, F}

there is a formula ¢ € Formy (L) in dnf
with J, = J.

In particular, every formula is logically equiva-
lent to one in dnf.
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5.5 Definition
Suppose S is a set of (truth-functional) con-

nectives — so each s € S is given by some truth
table.

(i) Write L[S] for the language with connec-
tives S instead of {—, —, A, V, <} and define
Form(L[S]) and Form,(L[S]) accordingly.

(ii) We say that S is adequate (or truth func-
tionally complete) if for all n > 1 and for
all n-ary truth functions J there is some
¢ € Form,(L[S]) with J, = J.
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5.6 Examples

1.

2.

S = {—,A,V} is adequate (Theorem 5.2)

Hence, by Lemma 4.2(i), S = {—, A} is ad-
equate:

¢V Y == (=g A1)
Similarly, S = {—, V} is adequate:

PN FE= —(=¢V )

. Can express V in terms of —, so {—,—} is

adequate (Problem sheet §2).

. S ={V,A,—} is not adequate, because any

¢ € Form(L[S]) has T in the top row of
tt ¢, SO no such ¢ gives J, = J—p,.

T here are precisely two binary connectives,
say T and | such that S = {1} and S = {{}
are adequate.
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