PART I: Propositional Calculus

1. The language of propositional calculus

... is a very coarse language with limited expressive power

... allows you to break a complicated sentence down into its subclauses, but not any further

... will be refined in PART II *Predicate Calculus*, the true language of 1st order logic

... is nevertheless well suited for entering formal logic

Lecture 2 - 1/8

1.1 Propositional variables

- all mathematical disciplines use variables,
 e.g. x, y for real numbers
 or z, w for complex numbers
 or α, β for angles etc.
- in logic we introduce variables $p_0, p_1, p_2, ...$ for sentences (*propositions*)
- we don't care what these propositions say, only their *logical properties* count,
 i.e. whether they are *true* or *false* (when we use *variables* for real numbers, we also don't care about *particular* numbers)

Lecture 2 - 2/8

1.2 The alphabet of propositional calculus

consists of the following symbols:

the propositional variables $p_0, p_1, \ldots, p_n, \ldots$

negation \neg - the unary connective *not*

four binary connectives $\rightarrow, \wedge, \vee, \leftrightarrow$ implies, and, or and if and only if respectively

two punctuation marks (and) *left parenthesis* and *right parenthesis*

This alphabet is denoted by \mathcal{L} . Note that these are *abstract symbols*. Note also that we use \rightarrow , and not \Rightarrow .

Lecture 2 - 3/8

1.3 Strings

• A string (from \mathcal{L})

is any finite sequence of symbols from ${\cal L}$ placed one after the other - no gaps

• Examples

(i)
$$\to p_{17}()$$

(ii) $((p_0 \land p_1) \to \neg p_2)$
(iii) $)) \neg)p_{32}$

• The **length** of a string is the number of symbols in it.

So the strings in the examples have length 4, 10, 5 respectively.

(A propositional variable has length 1.)

• we now single out from all strings those which make grammatical sense (*formulas*)

Lecture 2 - 4/8

1.4 Formulas

The notion of a **formula of** \mathcal{L} is defined (*re-cursively*) by the following rules:

I. every propositional variable is a formula

II. if the string A is a formula then so is $\neg A$

III. if the strings A and B are both formulas then so are the strings

$(A \rightarrow B)$	read A implies B
$(A \wedge B)$	read A and B
$(A \lor B)$	read A or B
$(A \leftrightarrow B)$	read A if and only if B

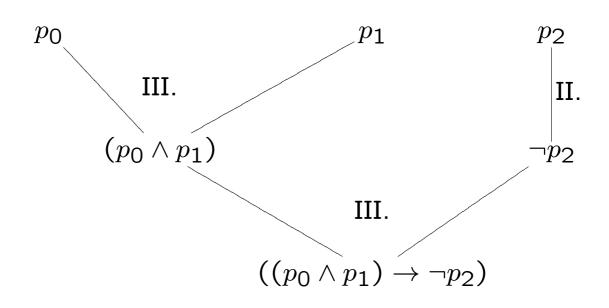
IV. Nothing else is a formula,

i.e. a string ϕ is a formula if and only if ϕ can be obtained from propositional variables by finitely many applications of the *formation rules* II. and III.

Lecture 2 - 5/8

Examples

• the string $((p_0 \land p_1) \rightarrow \neg p_2)$ is a formula (Example (ii) in 1.3) *Proof:*



- Parentheses are important, e.g. $(p_0 \land (p_1 \rightarrow \neg p_2))$ is a different formula and $p_0 \land (p_1 \rightarrow \neg p_2)$ is no formula at all
- the strings $\rightarrow p_{17}()$ and $)) \neg)p_{32}$ from Example (i) and (iii) in 1.3 are no formulas this follows from the following Lemma:

Lemma If ϕ is a formula then - either ϕ is a propositional variable - or the first symbol of ϕ is \neg - or the first symbol of ϕ is (.

Proof: Induction on n := the length of ϕ :

n = 1: then ϕ is a propositional variable any formula obtained via formation rules (II. and III.) has length > 1.

Suppose the lemma holds for all formulas of length $\leq n$.

Let ϕ have length n+1

⇒ ϕ is not a propositional variable $(n + 1 \ge 2)$ ⇒ either ϕ is $\neg \psi$ for some formula ψ - so ϕ begins with \neg

or ϕ is $(\psi_1 \star \psi_2)$ for some $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$ and some formulas ψ_1 , ψ_2 - so ϕ begins with (. \Box

Lecture 2 - 7/8

The unique readability theorem

A formula can be constructed in only one way: For each formula ϕ **exactly one** of the following holds

(a) ϕ is p_i for some unique $i \in \mathbf{N}$;

(b) ϕ is $\neg \psi$ for some **unique** formula ψ ;

(c) ϕ is $(\psi \star \chi)$ for some **unique** pair of formulas ψ , χ and a **unique** binary connective $\star \in \{\rightarrow, \land, \lor, \leftrightarrow\}$.

Proof: Problem sheet #1.

Lecture 2 - 8/8