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Aims

This course is intended to show the power and range of probability by considering real examples
in which probabilistic modelling is inescapable and useful. Theory will be developed as required
to deal with the examples.

Synopsis

Poisson processes and birth processes. Continuous-time Markov chains. Transition rates, jump
chains and holding times. Forward and backward equations. Class structure, hitting times
and absorption probabilities. Recurrence and transience. Invariant distributions and limiting
behaviour. Time reversal.

Renewal theory. Limit theorems: strong law of large numbers, strong law and central limit
theorem of renewal theory, elementary renewal theorem, renewal theorem, key renewal theorem.
Excess life, inspection paradox.

Applications in areas such as: queues and queueing networks – M/M/s queue, Erlang’s
formula, queues in tandem and networks of queues, M/G/1 and G/M/1 queues; insurance ruin
models; epidemic models; applications in applied sciences.
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• J.R. Norris, Markov chains, Cambridge University Press (1997)

• G.R. Grimmett, and D.R. Stirzaker, Probability and Random Processes, 3rd edition, Ox-
ford University Press (2001)

• G.R. Grimmett, and D.R. Stirzaker, One Thousand Exercises in Probability, Oxford Uni-
versity Press (2001)

• S.M. Ross, Introduction to Probability Models, 4th edition or later editions, Academic Press
(1989+)

• D.R. Stirzaker, Elementary Probability, 1st edition or later editions, Cambridge University
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This course is, in the first place, a course for 3rd year undergraduates who did Part A
Probability in their 2nd year. Other students such as MSc students are welcome, but should
note the prerequisites of the course. These are essentially an introductory course in probability
not based on measure theory. It will be an advantage if this included the central aspects of
discrete-time Markov chains. This will be relevant by the time we get to Lecture 5 in week 3.

This is a mathematics course. The name “Applied probability” suggests that we apply
probability. However, there is more to it. This course is about “probability” and “applications”
or application-driven probability theory. In particular, it is not just Part A Probability that we
apply, but also further probability building on Part A. Effectively, we will be spending a fair
share of our time developing theory so that we can analyse certain examples and applications.



Lecture 1

Introduction: Poisson processes,
generalisations and applications

Reading: Part A Probability; Grimmett-Stirzaker 6.1, 6.8 up to (10)
Further reading: Ross 4.1, 5.3; Norris Introduction, 1.1, 2.4

The aim of Lecture 1 is to give a brief overview of the course. To do this at an appropriate
level, we begin with a review of Poisson processes, which were treated at the end of the Part A
course. The material most relevant to us is again included here, and some more is on the first
assignment sheet.

For the rest of the course, let N = {0, 1, 2, . . .} denote the natural numbers including zero.
Apart from very few exceptions, all stochastic processes that we consider in this course will
have state space N (or a subset of N). Specifically, we have in mind that we are counting, and
studying the evolution of, numbers of people in a population, affected by a disease, of a certain
genetic type, in a queue, etc. or just balls in an urn, bacteria in a dish, numbers of claim-free
years for a motor insurance, the wealth of a gambler, numbers of defective items in a production
line.

However, most results in the theory of Markov chains will be treated for any countable, i.e.
finite or countably infinite, state space S. This does not pose any complications as compared with
N, since we can always enumerate all states in S and hence give them labels in N. Important
examples are Z, N2 and finite sets such as {bachelor,married,divorced,widowed} or a set of
colours, car makes, universities, shops, or indeed sets like {0, 1}n. For uncountable state spaces,
however, several technicalities arise that are beyond the scope of this course, at least in any
generality – we will naturally come across a few examples of Markov processes in R towards the
end of the course.

1.1 Poisson processes

There are many ways to define Poisson processes. We will use the following definition. We write
Z ∼ Exp(λ) to say “Z is an exponentially distributed random variable with probability density
function λe−λt, t ≥ 0”, for some λ > 0.

Definition 1 Let Zn ∼ Exp(λ), n ≥ 1, independent, for some λ > 0. Let Tn = Z1 + · · · + Zn,
n ≥ 1. Then the process X = (Xt, t ≥ 0) defined by

Xt = #{n ≥ 1: Tn ≤ t}, t ≥ 0,

is called Poisson process with rate λ, abbreviated PP(λ). For k ∈ N, the process

Yt = k +Xt t ≥ 0,

is called the Poisson process with rate λstarted from k. Unless specified otherwise, a PP(λ) is
always assumed to start from 0.

Think of Tn as arrival times of customers (arranged in increasing order). Then Xt is counting
the numbers of arrivals up to time t for all t ≥ 0 and we study the evolution of this counting
process. Instead of customers, one might be counting particles detected by a Geiger counter or
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Lecture 1: Introduction: Poisson processes, generalisations, applications 2

cars driving through St. Giles, etc. Something more on the link and the important distinction
between real observations (cars in St. Giles) and mathematical models (Poisson process) will
be included in Lecture 2. For the moment we have a mathematical model, well specified in the
language of probability theory. Starting from a simple sequence of independent random variables
Zn, n ≥ 0, we have defined a more complex object (Xt, t ≥ 0), that we call the Poisson process.

1.2 The Markov property

Discrete time Markov chains:

Let S be a countable state space, typically S = N. Let Π = (πrs)r,s∈S be a Markov transition
matrix on S. An S-valued stochastic process M = (Mn, n ≥ 0) is called a discrete time Markov
chain with transition matrix Π starting from i0 ∈ S if for all n ≥ 1 and i1, . . . , in ∈ S

P(M1 = i1, . . . ,Mn = in) =

n∏
j=1

πij−1,ij .

It is often convenient to capture the initial state by writing Pi0 instead of P. We then say that
M is starting from i0 under Pi0 . We will use notation such as M , (Mn, n ≥ 0) and (Mn)n≥0
interchangeably. Markov chains have the Markov property, which can be stated in several useful
ways:

• For all paths i0, . . . , in+1 ∈ S of positive probability P(M0 = i0, . . . ,Mn = in) > 0, we have

P(Mn+1 = in+1|M0 = i0, . . . ,Mn = in) = P(Mn+1 = in+1|Mn = in) = πin,in+1 .

• For all k ∈ S and events {(Mj)0≤j≤n ∈ A} and {(Mn+m)m≥0 ∈ B}, we have: if
P(Mn = k, (Mj)0≤j≤n ∈ A) > 0, then

P((Mn+m)m≥0 ∈ B|Mn = k, (Mj)0≤j≤n ∈ A) = P((Mn+m)m≥0 ∈ B|Mn = k) = Pk(M ∈ B).

• The processes (Mj)0≤j≤n and (Mn+m)m≥0 are conditionally independent given Mn = k,
for all k ∈ S. Furthermore, given Mn = k, the process (Mn+m)m≥0 is a Markov chain with
transition matrix Π starting from k.

Informally: no matter how we got to a state, the future behaviour of the chain is as if we
were starting a new chain from that state. This is one reason why it is vital to study Markov
chains not starting from one initial state but from any state in the state space S.

The Markov property for Poisson processes:

Proposition 2 Let X = (Xt)t≥0 be a Poisson process of rate λ started from 0. Fix t ≥ 0, then
conditionally on Xt = k, the processes (Xr)0≤r≤t and (Xt+s)s≥0 are independent and (Xt+s)s≥0
is a Poisson process of rate λ started from k.

Remark 3 1. We could, equivalently, have said that (Xt+s −Xt)s≥0 is a Poisson process of
rate λ started from 0 independent of (Xr)0≤r≤t.

2. This property will be later generalized to the strong Markov property.

We will need the following facts about Exponential random variables for the proof:
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Lemma 4 (Extended memoryless property) Let E ∼ Exp(λ) and let x, y > 0. Then

P(E > x+ y|E > y) = P(E > x) = e−λx.

Let L ≥ 0 be a non-negative random variable independent of E. Then

P(E > x+ L|E > L) = P(E > x) = e−λx

so conditionnally on E > L we have E − L ∼ Exp(λ) and is independent of L.

See p.s.# 1 for the proof.

Proof: [Proof of Porposition 2] Define X̃s = Xt+s and remember that we are working condition-
ally on Xt = k. Clearly, X̃0 = k and X̃ is a right-continuous, integer valued, increasing process.
Let us write Z̃1, Z̃2, . . . for the holding times of X̃ (see next section for why this is well defined).
Observe that

Z̃1 = Zk+1 − (t− Tk), Z̃n = Zk+n, n ≥ 2.

Furthermore,
{Xt = k} = {Tk ≤ t < Tk+1} = {Tk ≤ t} ∩ {Zk+1 > t− Tk}.

By the extended memoryless property, conditionally on Zk+1 > t − Tk we have that Z̃1 =
Zk+1−(t−Tk) ∼ Exp(λ) indpendently of Tk. Since Zk+2, Zk+3, . . . are i.i.d. Exp(λ) independent
of Z1, Z2, . . . Zk we see that Z̃1, Z̃2, . . . are i.i.d. Exp(λ) independent of Z1, Z2, . . . Zk. Since, given
Xt = k

Xr = #{1 ≤ n ≤ k :

n∑
i=1

Zi ≤ r}, r ≤ t

X̃s = #{n ≥ 1 :

n∑
i=1

Z̃i ≤ s}, s ≥ 0

we see that (Xr)r≤t and (X̃s)s≥0 are conditionally independent and that (X̃s)s≥0 is a PP(λ)
started from k. 2

Markov models (stochastic processes that have the Markov property and that model real-life
evolutions, natural or man-made) are useful in a wide range of applications, e.g. price processes
in Mathematical Finance, evolution of genetic material in Mathematical Biology, evolutions of
particles in space in Mathematical Physics. The Markov property is a property that makes the
model somewhat simple (not easy, but it could be much less tractable). We will develop tools
that support this statement.

1.3 Properties and characterization

Let us collect some properties that, apart from some technical details (to do with handling un-
countably many random variables), can serve as an alternative definition of the Poisson process.

Proposition 5 A process X ∼ PP(λ) has the following properties:

(i) Xt ∼ Poi(λt) for all t ≥ 0, where Poi(λt) refers to the Poisson distribution with mean λt.

(ii) X has independent increments, i.e. for all t0 ≤ · · · ≤ tn, the random variables Xtj −Xtj−1 ,
1 ≤ j ≤ n, are independent.

(iii) X has stationary increments, i.e. Xt+s − Xt ∼ Xs for all t ≥ 0, s ≥ 0, where ∼ means
“has the same distribution as”.
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Proof: Start with (i). We are going to use that Tn =
∑n

i=1 Zi is a sum of n independent Exp(λ)
r.v.’s and thus Tn ∼ Γ(n, λ) with density fTn(s) = λnsn−1e−λs/(n − 1)!. Hence, since they are
independent, Tn, Zn+1 have joint density

fTn,Zn+1(s, z) =
λnsn−1e−λs

(n− 1)!
λe−λz

and we get

P(Xt = n) = P(Tn ≤ t, Zn+! ≥ t− Tn)

=

∫ t

0

∫ ∞
t−s

fTn,Zn+1(s, z)dsdz

=

∫ t

0

λnsn−1e−λs

(n− 1)!
e−λ(t−s)ds

=

∫ t

0

λnsn−1e−λs

(n− 1)!
e−λ(t−s)ds

=
e−λt

(n− 1)!

∫ t

0
sn−1ds

=
e−λt(λt)n

n!
.

For (ii), Take n ≥ 1, 0 = t0 ≤ t1 ≤ . . . ≤ tn < ∞ and i1, . . . , in ∈ N. Define Ak =
{Xtk −Xtk−1

= ik}. Then, using the Markov property

P(∩nk=1Ak) = P(An| ∩n−1k=1 Ak)P(∩n−1k=1Ak)

= P(Xtn = in +
n−1∑
k=1

ik|Xtn−1 =
n−1∑
k=1

ik, Xtn−2 =
n−2∑
k=1

ik, . . . , Xt1 = i1)P(∩n−1k=1Ak)

= P(Xtn = in +
n−1∑
k=1

ik|Xtn−1 =
n−1∑
k=1

ik)P(∩n−1k=1Ak)

= P(Xtn −Xtn−1 = in)P(∩n−1k=1Ak)

= P(An)P(∩n−1k=1Ak)

=

n∏
k=1

P(Ak)

by induction. This proves (ii). (iii) is a direct consequence of the fact that (Xt+s −Xt)s≥0 is a
PP(λ). 2

Remark 6 In fact, we will see that if X is a right-continuous random process, then X is a
Poisson process with rate λ if and only if it satisfies properties (1),(2) and (3) of Proposition 5.

1.4 Continuous-time random processes

We have been very careful so far to define a Poisson process (Xt, t ≥ 0) entirely through the
sequence of holding times (Zn)n≥1. That is because working with infinite sequences of random
variables does not create (too many) measure-theoretical difficulties.

However, we can’t always use this trick when working with more general random processes. In
that case, it is useful to observe that (Xt, t ≥ 0) is not just an uncountable family of (dependent!)
random variables but indeed that t 7→ Xt is a random right-continuous function. This point of
view is very useful since it is the formal justification for pictures of “typical realisations” of X.
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Let S be a countable set. A continuous-time random process

(Xt)t≥0 = (Xt : 0 ≤ t <∞)

with values in S is a family of random variables Xt : Ω 7→ S.
When we talk about the law of the process X, we mean a probability measure that should,

in principle, be able to handle any event associated with X. We want to be able to deal with
quantities such as P(Xt = i) or P(Xt0 = i0, Xt1 = i1, . . . , Xtn = in), or P(Xt = i, for some t > 0).
There are subtleties in this problem not present in the discrete-time case. They arise because

P (∪nAn) =
∑
n

P(An),

whereas for an uncountable union ∪t≥0At no such rule exists.
To avoid these subtleties as far as possible we only consider processes (Xt)t≥0 which are

right-continuous. Since our state-space S is countable this means that for all ω ∈ Ω and t ≥ 0
there exists ε > 0 such that

Xs(ω) = Xt(ω) for t ≤ s ≤ t+ ε.

By a standard result of measure theory (see section 6.6 in Norris) the law of a right-continuous
process is completely determined by its finite-dimensional distributions, that is from the proba-
bilities

P(Xt0 = i0, Xt1 = i1, . . . , Xtn = in)

for n ≥ 0, 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn and i0, . . . , in ∈ S.

Example 7

P(Xt = i, for some t > 0) = 1− lim
n→∞

∑
j1,...,jn 6=i

P(Xq1 = j1, . . . , Xqn = jn)

where q1, q2, . . . is an enumeration of the rationals.

Every path t 7→ Xt(ω) of a right-continuous process must remain constant for a while in
each new state, so there are three possibilities for the sort of paths we get. In the first case the
process makes infinitely many jumps but only finitely many on any time-interval [0, t].
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The second case is where the path makes finitely many jumps and then becomes stuck in
some state forever.

The last case is when the process makes infinitely many jumps in finite time. In this case,
after the explosion time ζ the process can start-up again; it may explode again or it may not.

Coming back to our statement of the Markov property for a Poisson process (Xt)t≥0, we
are really treating each of (Xr)r≤t and (Xt+s)s≥0 as a random variable in its own right (with
values in the sets of integer-valued right-continuous paths) rather than a collection of random
variables.

An example of an event for such a random variable is

{(Xr)r≥0 ∈ A}

where

A = { right-continuous functions f : [0, t] 7→ S such that f(r) ≤ 2 for all r ≤ t}.

Of course, this is usually written simply as

{Xr ≤ 2 for 0 ≤ r ≤ t}.
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When we say that for a Poisson process (Xt)t≥0 the variables (Xr)r≤t and (Xt+s)s≥0 are con-
ditionally independent given Xt = k, we mean that for all measurable sets of paths A and
B

P((Xt+s)s≥0 ∈ B, (Xr)r≤t ∈ A|Xt = k) = P((Xt+s)s≥0 ∈ B|Xt = k)P((Xr)r≤t ∈ A|Xt = k).

Moreover, since the finite dimensional distributions characterise such processes, this is equivalent
to having

P(Xr1 = x1, . . . , Xrm = xm, Xt+s1 = y1, . . . , Xt+sn = yn|Xt = k)

= P(Xr1 = x1, . . . , Xrm = xm|Xt = k)P(Xt+s1 = y1, . . . , Xt+sn = yn|Xt = k)

for all n,m, r1 ≤ . . . ≤ rm, s1 ≤ . . . ≤ sn, x1 ≤ . . . ≤ xm ≤ k ≤ y1 ≤ . . . ≤ yn.

1.5 Brief summary of the course

Two generalisations of the Poisson process and several applications make up this course.

• The Markov property of Proposition ??(i)-(ii) can be used as a starting point to a big-
ger class of processes, so-called continuous-time Markov chains. They are analogues of
discrete-time Markov chains, and they are often better adapted to applications. On the
other hand, new aspects arise that did not arise in discrete time, and connections between
the two will be studied. Roughly, the first half of this course is concerned with continuous-
time Markov chains. Our main reference book will be Norris’s book on Markov Chains.

• The Poisson process is the prototype of a counting process. For the Poisson process,
“everything” can be calculated explicitly. In practice, though, this is often only helpful
as a first approximation. E.g. in insurance applications, the Poisson process is used as
a model to count claim arrivals. However, there is empirical evidence that inter-arrival
times are neither exponentially distributed nor independent nor identically distributed.
The second approximation is to relax exponentiality of inter-arrival times but to keep
their independence and identical distribution. These counting processes are called renewal
processes. Since exact calculations are often impossible or not helpful, the most important
results of renewal theory are limiting results. Our main reference will be Chapter 10 of
Grimmett and Stirzaker’s book on Probability and Random Processes.

• Many applications that we discuss are in queueing theory. The easiest, so-called M/M/1
queue consists of a server and customers arriving according to a Poisson process. Inde-
pendently of the arrival times, each customer has an exponential service time for which he
will occupy the server, when it is his turn. When the server is busy, customers queue until
being served. Everything has been designed so that the queue length is a continuous-time
Markov chain, and various quantities can be studied or calculated (equilibrium distribu-
tion, lengths of idle periods, waiting time distributions etc.). More complicated queues
arise if the Poisson process is replaced by a renewal process or the exponential service
time distribution by any other distribution. There are also systems with k = 2, 3, . . . ,∞
servers. Abstract queueing systems can be applied in telecommunications, computing
networks, etc.

• Some other applications include insurance ruin models and the propagation of diseases.



Lecture 2

Simple birth processes and explosion

Reading: Norris 2.2-2.3, 2.5; Grimmett-Stirzaker 6.8 (11),(18)-(20)

In this lecture we introduce birth processes as a generalisation of the Poisson process. This
definition and similar definitions (also for Markov chains) answer the following questions: given
the current state is m, how does the process behave in the future, and (for the purpose of an
inductive description) how does it depend on the past? (Answer to the last bit: conditionally
independent given the current state, for certain processes this can be expressed in terms of
genuine independence).

2.1 Definition and example of a simple birth process

If we use the Poisson process as a model for a growing population, we assume that new members
are born at the same rate irrespective of what the size of the population is. This is often
not realistic. We would rather expect this rate to increase with size (more births in larger
populations). Some saturation effects may occur, as well.

Also, the use of the Poisson process as a counting process of alpha particle emissions of a
decaying radioactive substance becomes questionable when the half-life time is short. We may
prefer a model where rates decrease with the number of emissions.

Here is a definition that gives ample modelling choice for these and other examples.

Definition 8 (Simple birth process) A random process (Xt)t≥0 of the form
Xt = k + # {n ≥ 1: Z1 + · · ·+ Zn ≤ t} is called a simple birth process of rates (λn)n≥0 starting
from X0 = k ∈ N, if the inter-arrival times Zj , j ≥ 1, are independent with Zj ∼ Exp(λk+j−1),
j ≥ 1. We also refer to X = (Xt, t ≥ 0) as a (k, (λn)n≥0)-birth process.

Note that the parameter λn is attached to state n. The so-called holding time of X in state
n has an Exp(λn) distribution, even if the chain starts in state k > 0. The first holding time
Z1 ∼ Exp(λk). Hence, when the chain first reach the state n it waits for an Exp(λn) distributed
time and then jumps to n+ 1.

“Simple” refers to the fact that no two births occur at the same time, which one would call
“multiple” births. Multiple birth processes can be studied as well, and given certain additional
assumptions, these are also examples of continuous-time Markov chains.

Example 9 Consider a population in which each individual gives birth after an exponential
time of parameter λ, independently and repeatedly. Denote by Xt the population size at time
t ≥ 0 and suppose that X0 = 1. Let us show that (Xt, t ≥ 0) is a simple birth process.

Clearly, the first birth occurs at Z1 ∼ Exp(λ). For the second birth, two Exp(λ) times
(“clocks”) compete, independently of Z1. We can study the inter-birth times Zn, n ≥ 2, induc-
tively, using parts of the theory of competing exponentials

Lemma 10 (Theory of competing exponentials-1) Let E1, . . . , En be n independent ∼ Exp(λ)
random variables. Define W := min{E1, . . . , En}. Then W ∼ Exp(nλ). Furthermore, the n− 1
residual times Oi = Ei−W are independent Exp(λ), and are also independent of W (a form of
the lack of memory property of the exponential distribution).

Proof: See p.s. #1. 2

8



Lecture 2: Simple birth processes and explosion 9

Here is the induction step for our population model: if the population size is n, with n
(residual) times to birth independent of Z1, . . . , Zn−1, the next birth occurs after Zn ∼ Exp(nλ),
by the theory of competing exponentials. By lack of memory, there are n−1 independent Exp(λ)
residual times to birth. With two more independent Exp(λ) times for the new individual and
the individual who has just given birth, the induction proceeds with new population size n+ 1.

Since Xt = 1 + #{n ≥ 1: Z1 + · · ·+ Zn ≤ t}, with Zj ∼ Exp(jλ), the process (Xt, t ≥ 0) is
a simple birth process with λn = nλ, a (1, (nλ)n≥0)-birth process.

Example 11 In the setting of the previous example, what is m(t) = E(Xt)? We will condition

on T1 = Z1 as in Example 139. We can write XT1+s = X
(1)
s + X

(2)
s , where X

(1)
s and X

(2)
s are

separate counts of the numbers of descendants of the two individuals after time T1. By model

assumption, (X
(1)
s , s ≥ 0) and (X

(2)
s , s ≥ 0) are independent, independent of T1 and distributed

as (Xs, s ≥ 0). Therefore, by Proposition 135(c) in the Appendix

m(u) = E(Xu) =

∫ ∞
0

λe−λtE(Xu|T1 = t)dt

=

∫ u

0
λe−λtE(Xu|T1 = t)dt+ e−λu

=

∫ u

0
λe−λtE(XT1+(u−T1)|T1 = t)dt+ e−λu

=

∫ u

0
λe−λtE

(
X

(1)
u−T1 +X

(2)
u−T1

∣∣∣T1 = t
)
dt+ e−λu

=

∫ u

0
λe−λtE

(
X

(1)
u−t +X

(2)
u−t

)
dt+ e−λu

=

∫ u

0
λe−λt2m(u− t)dt+ e−λu

also using that Xu = X0 = 1 if T1 > u, the population split XT1+s = X
(1)
s + X

(2)
s noted above

and Fact 138. Setting r = u− t, we can proceed as in Example 139:

eλum(u) = 1 + 2λ

∫ u

0
eλrm(r)dr.

differentiated yields
m′(u) = λm(u)

so the mean population size grows exponentially, and X0 = 1 gives m(0) = E(X0) = 1, so that

E(Xt) = m(t) = eλt, t ≥ 0.

2.2 The explosion phenomenon for simple birth processes

If the rates (λn)n≥0 increase too quickly, it may happen that “infinitely many individuals are
born in finite time”. We call this phenomenon explosion and say X explodes. Formally, we can
express the possibility of explosion by P(T∞ <∞) > 0, where T∞ = limn→∞ Tn =

∑
j≥1 Zj . It

is easy to see that this can indeed happen, with probability 1 in fact: by Tonelli’s theorem,

E(T∞) = E

 ∞∑
j=0

Zj

 =
∞∑
j=0

E(Zj) =
∞∑
j=0

1

λk+j
; (1)

so this expectation is finite if the series of inverse birth rates is summable (avoid this when
modelling!), and then we have P(T∞ <∞) = 1, i.e. explosion with probability 1.
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Since such birth processes are hardly useful for applications, it will be more useful to have a
criterion under which explosion does not happen, i.e. under which P(T∞ =∞) = 1.

Remember that it is not a valid argument to say that this is ridiculous for the application
we are modelling and hence cannot occur in our model. We have to check whether it can occur
under the model assumptions. And if it does occur and is ridiculous for the application, it means
that the model is not a good model for the application. For simple birth processes, we have the
following necessary and sufficient condition.

Proposition 12 Let X be a (k, (λn)n≥0)-birth process. Then

X does not explode ⇐⇒ P(T∞ =∞) = 1 ⇐⇒ P(T∞ =∞) > 0 ⇐⇒
∞∑
m=k

1

λm
=∞.

Proof: The first equivalence is the definition and the others are logically equivalent to

P(T∞ <∞) > 0 ⇐⇒ P(T∞ <∞) = 1 ⇐⇒
∞∑
m=k

1

λm
<∞.

As noted above, the calculation in (1) gives
∑

m≥k 1/λm < ∞ ⇒ P(T∞ < ∞) = 1. Trivially
P(T∞ <∞) = 1⇒ P(T∞ <∞) > 0. It remains to show

∑
m≥k 1/λm =∞⇒ P(T∞ =∞) = 1.

In the following we use extended functions exp: [−∞,∞]→ [0,∞] and log : [0,∞]→ [−∞,∞].
Using dominated convergence, continuity of exp and log, and the independence of Zj , j ≥ 0,

− logE (exp(−T∞)) = − logE

exp

− lim
n→∞

n−1∑
j=0

Zj

 = − lim
n→∞

logE

exp

− n−1∑
j=0

Zj


= − lim

n→∞
logE

n−1∏
j=0

e−Zj

 = − lim
n→∞

log
n−1∏
j=0

E(e−Zj ) = −
∞∑
j=0

logE
(
e−Zj

)

=

∞∑
m=k

log

(
1 +

1

λm

)
≥



∞∑
i=1

log

(
1 +

1

λni

)
if λni ≤ 1 infinitely often.

∞∑
n=n0

log

(
1 +

1

λn

)
if λn > 1 for all n≥n0≥k,

In both cases, the series is infinite, as we see using, respectively, log(1 + 1/λni) ≥ log(2) and
log(1 + 1/λn) ≥ log(2)/λn. Hence,

∑
m≥k 1/λm =∞⇒ E(e−T∞) = 0⇒ P(T∞ =∞) = 1. 2

We have not explicitly specified X after T∞ if T∞ < ∞. In a “population size model”,
Xt = ∞ for all t ≥ T∞ is a reasonable convention. Formally, this means that X is a process
in N = N ∪ {∞}. This process is called the minimal process. It is “active” on a minimal time
interval. We will show the Markov property for minimal processes. It can also be shown that
there are other ways to specify X after explosion that preserve the Markov property. The next
natural thing to do is to start afresh independently after explosion. Any such process is then
called non-minimal.

Example 13 In the setting of Example 9, we have λm = mλ, hence
∑

m≥k 1/λm = ∞. By
Proposition 12, a (k, (mλ)m≥0)-birth process X does not explode. We knew this already since
we showed in Example 11 that E(Xt) < ∞ for all t ≥ 0, and if X did explode, we would have
P(Xt =∞) = P(T∞ ≤ t) > 0, at least for t sufficiently large (actually for all t > 0).



Lecture 3

The Markov property of simple birth
processes

Reading: Norris 2.4-2.5; Grimmett-Stirzaker 6.8 (21)-(25)

In this lecture we discuss in detail the Markov property for birth processes. We will use
the Markov property for Poisson processes in the construction and analysis of continuous-time
Markov chains.

3.1 Statements of the Markov property

Proposition 14 (Markov property) Let X be a (k, (λn)n≥0)-birth process, t ≥ 0 and ` ≥ k.
Then the processes (Xr)r≤t and (Xt+s)s≥0 are conditionally independent given Xt = `, and

X̃ := (Xt+s)s≥0 is an (`, (λn)n≥0)-birth process. We use the notation

(Xr)r≤t
∐
Xt=`

(Xt+s)s≥0 =: X̃ ∼ (`, (λn)n≥0)-birth process.

To apply the Markov property, recall from our discussion of the Markov propertuy of Poisson
processes (see also Fact 137 in the appendix) that the statement of conditional independence is
actually equivalent to the following statement. For all 0 ≤ r1 < · · · < rn ≤ t, 0 ≤ s1 < · · · < sm,
i1, . . . , in ∈ N, j1, . . . , jm ∈ N,

P(Xr1 = i1, . . . , Xrn = in, Xt+s1 = j1, . . . , Xt+sm = jm|Xt = `)

= P(Xr1 = i1, . . . , Xrn = in|Xt = `)P(X̃s1 = j1, . . . , X̃sn = jn).

The most useful case is often m = n = 1:

P(Xr = i,Xt+s = j|Xt = `) = P(Xr = i|Xt = `)P(X̃s = j).

In words, we can express the Markov property as “past and future are (conditionally) inde-
pendent given the present”, which we can reformulate as “the past is irrelevant for the future,
provided we know the present”.

Mathematically, we can reformulate using an argument most economically written, as follows.
The conditional independence statement in the Markov property is about three events

past E = {(Xr)r≤t ∈ A}, future F = {(Xt+s)s≥0 ∈ B} and present C = {Xt = `}

and states P(E ∩ F |C) = P(E|C)P(F |C). This is a special property that does not hold for
general events E, F and C. If P(E ∩ C) > 0, we can always use the definition of conditional
probabilities to obtain

P(E ∩ F |C) =
P(E ∩ F ∩ C)

P(C)
=

P(F |E ∩ C)P(E ∩ C)

P(C)
= P(F |E ∩ C)P(E|C),

so that, by comparison, we here have P(F |E ∩ C) = P(F |C), and we deduce

11
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Corollary 15 (Markov property, alternative formulation) For all t ≥ 0, ` ≥ k and sets
of paths A and B with P(Xt = `, (Xr)r≤t ∈ A) > 0, we have

P((Xt+s)s≥0 ∈ B|Xt = `, (Xr)r≤t ∈ A) = P((Xt+s)s≥0 ∈ B|Xt = `) = P((X̃s)s≥0 ∈ B),

where X̃ is an (`, (λn)n≥0)-birth process.

In fact, the condition P(Xt = `, (Xr)r≤t ∈ A) > 0 can often be waived, if the conditional
probabilities can still be defined via an approximation by events of positive probability. This is
a delicate statement, but it is useful for illustration:

Example 16 Recall in Example 11 we conditioned a (1, (nλ)n≥0)-birth process X on T1 and
carefully showed that E(Xu|T1 = t) = 2E(Xu−t) for all t ∈ (0, u) using the independence of T1
and the descendants of the two individuals at time T1. Note that T1 = inf{t ≥ 0: Xt = 2}. This
means that

{T1 = t} = {Xr = 1, r < t;Xt = 2} ⊂ {Xt = 2}.

If we ignore the fact P(T1 = t) = 0, the Markov property yields for all n ≥ 0

P(Xu = n|T1 = t) = P(Xu = n|Xr = 1, r < t;Xt = 2) = P(Xu = n|Xt = 2) = P(X̃u−t = n),

where X̃ is a (2, (nλ)n≥0)-birth process. This also gives

E(Xu|T1 = t) =
∑
n∈N

nP(Xu = n|T = t) =
∑
n∈N

nP(X̃u−t = n) = E(X̃u−t) = 2E(Xu−t),

since, by model assumption, the families of two individuals evolve completely independently like
separate populations starting from one individual each.

3.2 Proof of the Markov property

Proof: The general case k ≥ 0 follows from the special case k = 0 since for X is a (k, (λn)n≥0)-
birth process if and only if (Xt−k)t≥0 is a (0, (λk+n)n≥0)-birth process, and the Markov property
of one implies the Markov property of the other.

We now assume k = 0. On {Xt = `} = {T` ≤ t < T`+1} we have

X̃s := Xt+s = #

n ≥ 1:
n−1∑
j=0

Zj ≤ t+ s

 = `+ #

n ≥ `+ 1:
n−1∑
j=0

Zj − t ≤ s


= `+ #

m ≥ 1:
m−1∑
j=0

Z̃j ≤ s

 ,

where Z̃j = Z`+j , j ≥ 1, and Z̃0 = T`+1 − t. Therefore, X̃ has the structure of a birth process

starting from `, since given Xt = `, the Z̃j ∼ Exp(λk+j), j ≥ 1, are independent. For j = 0 note
that

P(Z̃0 > z|Xt = `) = P(Z` > (t− T`) + z|Z` > t− T` ≥ 0) = P(Z` > z)

where we applied the lack of memory property of Z` to the independent threshold t− T`. This
actually requires a slightly more thorough explanation, since we are dealing with repeated con-
ditioning (first Xt = `, then Z` > t − T`), but we leave this to the reader and only point out
that the key result that we need is Lemma 4 below.

This shows that X̃ is an (`, (λn)n≥0-birth process. To complete the proof we also have to
establish conditional independence from (Xr)r≤t given Xt = `. Again by the lack of memory

property we see that Z̃0 (as well as the Z̃j , j ≥ 1) are conditionally independent of Z0, . . . , Z`−1
given Xt = `, and the assertion follows. We refer to the optional Exercise A.2.7 for details. 2
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3.3 The strong Markov property

The Markov property means that at whichever fixed time we inspect our process, information
about the past is not relevant for its future behaviour. If we think of an example of radioactive
decay, this would allow us to describe the behaviour of the emission process, say, after the
experiment has been running for 2 hours. Alternatively, we may wish to reinspect after 1000
emissions. This time is random, but we can certainly carry out any action we wish at the time
of the 1000th emission. Such times are called stopping times.

We will mainly be interested in stopping times of the form

T{n} = inf{t ≥ 0 : Xt = n} or TC = inf{t ≥ 0 : Xt ∈ C}

for n ∈ N or C ⊂ N (or later C ⊂ S, a countable state space).

Proposition and Fact 17 (Strong Markov property) (i) Let X be a (k, (λn)n≥0)-birth
process and T ≥ 0 a stopping time. Then for all ` ∈ N with P(XT = `) > 0, we have that
(Xr)r≤T and (XT+s)s≥0 are conditionally independent given XT = `, and the conditional
distribution of (XT+s)s≥0 is a (`, (λn)n≥0-birth process.

(ii) Let X ∼ PP(λ). Then (XT+s −XT )s≥0 ∼ PP(λ) starting from 0, independent of T and
of (Xr)r≤T , provided that we have one of the following:

(a) T = S for a stopping time S,

(b) or T = R for a random time R independent of X,

(c) or T = min(R,S) for a stopping time S and an independent time R.

The proof of the strong Markov property (in full generality) is beyond the scope of this course,
but we will use the result from time to time. See the Appendix of Norris’s book for details.
The proof of the strong Markov property for first hitting times Ti is straightforward since then
P(XTi = i) = 1, so the only relevant statement is for ` = i, and (Xr)r≤Ti can be expressed in
terms of Zj , 0 ≤ j ≤ i− 1, and (XT+s−XT )s≥0 in terms of Zj , j ≥ i. Specifically, conditioning
on {XTi = i} is like not conditioning at all, because this event has probability 1. Furthermore,
it is enough to establish independence of holding times, because “can be expressed in terms of”
is actually “is a measurable function G of”, where the first function e.g. goes from [0,∞)i to a
space

X̃ = {f : [0, t]→ N, f right-continuous, t ≥ 0}.

Now, there is a general result saying that if G : A → X and H : B → Y are (measureable)
functions, and A and B are independent random variables in A and B, then G(A) and H(B)
are also independent. To prove this using our definition of independence, just note that for all
E ⊂ X and F ⊂ Y (measurable), we have

P(G(A) ∈ E,H(B) ∈ F ) = P(A ∈ G−1(E), B ∈ H−1(F ))

= P(A ∈ G−1(E))P(B ∈ H−1(F ))

= P(G(A) ∈ E)P(H(B) ∈ F ).

A more formal definition of stopping times is as follows.

Definition 18 (Stopping time) A random time T taking values in [0,∞] is called a stopping time
for a continuous-time process X = (Xt)t≥0 if, for all t ≥ 0, the event {T ≤ t} can be expressed (in a
measurable way) in terms of (Xt)r≤t.
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This definition makes sense for processes X that are not simple birth processes. In the next lecture
we have several independent processes on the same time scale. The easiest example is two independent
birth processes X = (X(1), X(2)) modelling e.g. two populations that we observe simultaneously.

Example 19 1. Let X be a simple birth process starting from X0 = 0. Then for all i ≥ 1, Ti = inf{t ≥
0 : Xt = i} is a stopping time since {T ≤ t} = {∃s ≤ t : Xs = i} = {Xt ≥ i} (the latter equality uses the
property that birth processes do not decrease; thus, strictly speaking, this equality is to mean that the
two events differ by sets of probability zero in the sense that we write E = F if P(E \F ) = P(F \E) = 0).
Ti is called the first hitting time of i. Clearly, for X modelling a Geiger counter and i = 1000, we are in
the situation of our motivating example.

2. LetX be a simple birth process. Then for ε > 0, the random time Tε = inf{Ti ≥ T1 : Ti−Ti−1 < ε},
i.e. the first time that two births have occurred within time at most ε of one another, is a stopping time.

In general, the first time that something happens, or that several things have happened successively,

is a stopping time. It is essential that we don’t have to look ahead to decide. In particular, the last time

that something happens, e.g. the last birth time before time t, is not a stopping time, and the statement

of the strong Markov property is usually wrong for such times.



Lecture 4

Continuous-time Markov chains

Reading: Norris 2.1, 2.6
Further reading: Grimmett-Stirzaker 6.9; Ross 6.1-6.3; Norris 2.9

In this lecture, we generalise the notion of a birth process to allow deaths and other transi-
tions. We will allow, in principle, transitions between any two states in a countable state space
S, just as for discrete-time Markov chains.

Continuous-time Markov chains are similar in many respects to discrete-time Markov chains,
but there are also important differences. Roughly, we will spend Lectures 5 and 6 exploring the
differences and tools to handle these, then we will turn to similarities in Lectures 7 and 8.

4.1 Definition and terminology

A (ν,Π)-Markov chain (Mn, n≥0) is a discrete-time Markov chain on a countable state space S
with initial distribution ν=(νi)i∈S and transition matrix Π=(πi,j)i,j∈S. Its distribution is given
by

P(M0 = i0, . . . ,Mn = in) = νi0πi0,i1 · · ·πin−1,in , i0, . . . , in ∈ S, n ≥ 1.

Recall also that for E ∼ Exp(1) and λ ∈ (0,∞), we have Z = E/λ ∼ Exp(λ). We will extend
the family of exponential distributions and use the convention Z = E/λ =∞ when λ = 0.

We are going to see three equivalent definitions of a continuous-time Markov chain with
countable state space S. The first one is that it is a discrete-time Markov chain which spends a
random amount of time in each state.

Definition 20 (Jump-chain and holding time definition) Let (Mn)n≥0 be a (ν,Π)-Markov
chain. Let λi ≥ 0, i ∈ S, and (Zn)n≥0 such that conditionally given M0 = i0, . . . ,Mn = in, we
have Zj ∼ Exp(λij ), 0 ≤ j ≤ n, independent, for all i0, . . . , in ∈ S and n ≥ 0. Define

Xt =

{
Mn, Tn ≤ t < Tn+1, n ≥ 0,
∞, T∞ ≤ t <∞, if T∞ <∞,

where T0 = 0, Tn = Z0 + · · · + Zn−1, n ≥ 1. Then (Xt)t≥0 is called minimal continuous-time
Markov chain with initial distribution ν, jump probabilities (πij)i,j∈S and holding rates (λi)i∈S .

Remark 21 1. In other words, when in state i ∈ S the chain waits for an ∼Exp(λi) time
and then jumps to a new state chosen according to the transition probabilities Π = (pi,j).

2. The qualifier “minimal” is only relevant when P(T∞ <∞) > 0, i.e. when X can explode.
We will essentially always work with continuous-time Markov chains with P(T∞ <∞) = 0,
i.e. P(T∞ = ∞) = 1. We studied the explosion phenomenon in Lecture 3 for the special
case of a birth process. A “non-minimal” continuous-time Markov chain would be one that
is not absorbed in a state ∞ at time T∞, but may continue to evolve in S after T∞, if
T∞ < ∞. Clearly, this requires further specification – this is beyond this course in any
generality. We will include the qualifier “minimal” whenever we make general statements
that may fail for non-minimal chains. We will omit the qualifier “minimal” when we
already know that P(T∞ =∞) = 1.

15
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3. We may write Zn ∼ Exp(λMn) given Mn as short-hand for Zn ∼ Exp(λi) conditionally
given Mn = i, for all i ∈ S. Similarly, Definition 20 says that Zn ∼ Exp(λMn), n ≥ 0, are
“conditionally independent given (Mn)n≥0”. This is informal, since while S is countable,
the space SN of sequences in S where (Mn)n≥0 takes its values, is not countable, and
Definition 136 in the Annex of conditional independence does not apply. Definition 136
in the Annex does apply to finite sequences in S, and gives rigorous meaning to Definition
20.

Example 22 (Simple birth processes) For (k, (λn)n≥0)-birth processes, we have Mn = k+n
deterministic, i.e. νk = 1, πi,i+1 = 1. Conditional independence of the Zn follows since they
are unconditionally independent to start with, and Exp(λMn) = Exp(λk+n) is the unconditional
distribution of Zn. Hence, simple birth processes are minimal continuous-time Markov chains.

Observe that there is no loss of generality in supposing that πi,i ∈ {0, 1} for all i ∈ S, and
that λi = 0 if and only if πi,i = 1. Indeed, we can always modify Π and (λ) without changing
the behaviour of the chain to have those properties:

• If, πi,i ∈ (0, 1), then not all “jump times” Tn are jump times. More precisely, starting from
M0 = i we have G = inf{n ≥ 1: Mn 6= i}
∼ geom(1 − πi,i) and Z0 + · · · + ZG−1 ∼ Exp(πi,iλi), so we can define λ̃i = πi,iλi and
π̃i,i = 0, π̃i,j = πi,j/(1− πi,i), j 6= i,

• if λi = 0 while πi,i 6= 1, we can define π̃i,i = 1 and π̃i,j = 0, j 6= i

It is customary to represent the transition probabilities πi,j and the holding rates λi in a
single matrix, called the Q-matrix Q = (qi,j)i,j∈S, as follows.

Definition 23 (Q-matrix) A Q-matrix on S is any matrix Q = (qi,j : i, j ∈ S) which satisfies
the following conditions

1. 0 ≤ −qi,i <∞ for all i;

2. qi,j ≥ 0 for all i, j ∈ S

3.
∑

j∈S qi,j = 0 for all i ∈ S.

Definition 24 (Q-matrix and continuous-time Markov chains) Given jump probabilities
(πij)i,j∈S and holding rates (λi)i∈S satisfying πi,i ∈ {0, 1} and λi = 0 ⇐⇒ πi,i = 1, the matrix
Q defined by

qi,j = λiπi,j , j ∈ S, j 6= i and qi,i = −λi, i ∈ S

is a Q-matrix. Conversely, we can express (λi)i∈S and Π in terms of Q, as follows:

λi = −qi,i, πi,i =

{
0 if λi > 0,
1 if λi = 0,

πi,j =

{
qi,j/λi if λi > 0,
0 if λi = 0.

A (minimal) continuous-time Markov chain X with initial distribution ν, jump probabilities
(πij)i,j∈S and holding rates (λi)i∈S satisfying πi,i ∈ {0, 1} and λi = 0 ⇐⇒ πi,i = 1 is called a
(ν,Q)-Markov chain.

Remark 25 We have qi,i = −
∑

j∈S : j 6=i qi,j for each i ∈ S, since either
∑

j∈S : j 6=i πi,j = 1 or
λi = 0. As a consequence, the row sums of a Q-matrix vanish.
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Often, a continuous-time Markov chain will start from a fixed state i0. We use notation

νi = δi,i0 =

{
1 i = i0
0 i 6= i0

or short ν = δi0 ,

where δi,i0 with two indices, here i and i0, is called the Kronecker delta, while δi0 as a distribution
only charging one point, here i0, is called the Dirac delta.

Example 26 (Simple birth processes) For a (k, (λn)n≥0)-birth processes, we obtain

Q =


−λ0 λ0 0 0 · · ·

0 −λ1 λ1 0 · · ·

0 0 −λ2 λ2
. . .

...
. . .

. . .
. . .

. . .

 .

A (k, (λn)n≥0)-birth process is a (δk, Q)-Markov chain.

4.2 Second construction

Firs we need a key result about sequences of Exponential random variables and their minimum:
Recall that Z = E/λ ∼ Exp(λ) for E ∼ Exp(1). If λ = 0, this means that P(Z =∞) = 1.

Lemma 27 (Theory of competing exponentials) Let αj≥0, j≥0, with λ :=
∑

j≥0 αj<∞.
Let Cj ∼ Exp(αj), j ≥ 0. Then W = min{Cj , j ≥ 0} ∼ Exp(λ). If λ > 0, let M = j if W = Cj.
Then M is independent of W with distribution P(M = j) = αj/λ. Furthermore, conditionally
given M = j, the residual times Ck −W are independent Exp(αk), k 6= j.

Proof: First separately

P(W > t) = P(Cj > t, j ≥ 0) =
∞∏
j=0

P(Cj > t) = exp

− ∞∑
j=0

qi,jt

 = exp(−λt).

so W ∼ Exp(λ). Similarly Vj = min{Ck, k 6= j} ∼ Exp(λ− αj).

P(M = j) = P(Cj < Vj) =
αj

αj + (λ− αj)
= αj/λ.

For independence and residual times, we refer to the argument in Exercise A.1.5, which extends
to the present setting, using appropriate vector notation for the overshoots Ck −W . 2

Proposition 28 (Jump rates construction) Start with an initial state X0 = Y0 with dis-
tribution ν. Let (Sin, : n ≥ 1, i ∈ S) be a collection of independent Exponential variables of
parameter 1. Then inductively for n = 0, 1, 2, . . ., if Yn = i we set

Zjn+1 = Sjn+1/qi,j for j 6= i,

Zn+1 = inf
j 6=i

Zjn+1,

Yn+1 =

{
j if Zn+1 = Zjn+1,

i if Zn+1 =∞.

For n = 1, 2, . . . set Tn = Z1 + Z2 + . . .+ Zn and for t ≥ 0 let

Xt =

{
Yn if Tn ≤ t < Tn+1 for some n

∞ otherwise.

Then (Xt : t ≥ 0) is a (ν,Q)-Markov chain.

Proof: It is a straightforward consequence of Lemma 27 that (Yn, n ≥ 0) is a discrete time (ν,Π)
Markov chain. Then conditionally on (Yn, n ≥ 0), the same Lemma shows that the holding times
Zn are independent exponential with parameter λYn . 2
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4.3 Third construction

Our third and final construction of a Markov chain with generator matrix Q and initial dis-
tribution and ν is based on the Poisson process. Imagine the state-space S as a labyrinth of
chambers and passages, each passage shut off by a single door which opens briefly from time
to time to allow you through in one direction only. Suppose the door giving access to chamber
j from chamber i opens at the jump times of a Poisson process of rate qi,j and you take every
chance to move that you can, then you will perform a Markov chain with Q-matrix Q. In more
mathematical terms,

Proposition 29 (Poisson processes construction) Start with an initial state X0 = Y0 with
distribution ν, and with a family of independent Poisson processes {(N ij

t , t ≥ 0), i, j ∈ S, i 6= j}
having respective rates qi,j. Then set T0 = 0 and define inductively for n = 0, 1, 2, . . .

Tn+1 = inf{t > Tn : NYnj
t 6= NYnj

Tn
for some j 6= Yn

and
Yn+1 =

{
j if Tn+1 <∞ and NYnj

Tn
6= NYnj

Tn+1
.

For t ≥ 0 let

Xt =

{
Yn if Tn ≤ t < Tn+1 for some n

∞ otherwise.

Then (Xt : t ≥ 0) is a (ν,Q)-Markov chain.

Proof: We have to check that the process defined here has the correct jump chain, holding
times and dependence structure. Clearly X0 = M0 has the right initial distribution. Given
M0 = i0, the first jump occurs at the first time at which one of the Poisson processes N i0j ,
j 6= i0, has its first jump. This time is a minimum of independent exponential random variables
of parameters qi0j , T1 = inf{T i0j1 , j 6= i0}. By Lemma 27, (M0, Z0,M1) have the distribution as

required, and the post-T1 Poisson processes (N i0j
T1+s
−N i0j

T1
)s≥0 are independent of (M0, Z0,M1).

It is easy to see that the post-T1 Poisson processes (N ij
T1+s

−N ij
T1

)s≥0 for i 6= i0, j 6= i, are also

independent Poisson processes since T1 is independent of these N ij . Inductively, assuming we
have (M0, Z0, . . . ,Mn−1, Zn−1,Mn), as required, and independent (N ij

Tn+s
−N ij

Tn
)s≥0, the same

argument applies to give (M0, Z0, . . . ,Mn, Zn,Mn+1) independent of (N ij
Tn+1+s

−N ij
Tn+1

)s≥0. This
completes the induction step and hence the proof. 2

4.4 Markov property for continuous-time chains

Corollary 30 (Markov property and strong Markov property) Let X be a (ν,Q)-Markov
chain, t ≥ 0 a fixed time and ` ∈ S. Then

(Xr)r≤t
∐
Xt=`

(Xt+s)s≥0 =: X̃ ∼ (δ`, Q)-Markov chain.

Let T be a stopping time and ` ∈ S. Then

(Xr)r≤T
∐
XT=`

(XT+s)s≥0 =: X̃ ∼ (δ`, Q)-Markov chain.

Proof: The post-t Poisson processes Ñ ij = (N ij
t+s−N

ij
t )s≥0 are Poisson processes independent of

the pre-t Poisson processes (N ij
r )0≤r≤t. The pre-t process (Xr)r≤t is a function of X0 and of the

pre-t Poisson processes, while the post-t process X̃ is constructed from X̃0 = Xt and (Ñ ij)i,j∈S
just as X is constructed from X0 and (N ij)i,j∈S in Proposition 29. Hence, we have conditional
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independence given Xt = `, as required, and since X̃0 ∼ δ` conditionally given Xt = `, the
process X̃ is a (δ`, Q)-Markov chain conditionally given Xt = `.

For T = Tn, n ≥ 1, and for first passage times such as H` = inf{t ≥ T1 : Xt = `} and nth
passage times of `, n ≥ 1, this proof can be adapted in combination with an induction in n and
the strong Markov property of N ij . The general case is beyond the scope of this course. 2

4.5 Examples: M/M/1 and M/M/s queues

In applications, the model description is usually of the following form. There is an initial
distribution ν on a state space S. When in state i ∈ S, there is a set of “neighbouring”
states into which transitions are possible, and for each such state j ∈ S, we have one or more
independent exponential clocks with total rate qi,j that trigger a transition into j. We can
build a Q-matrix Q = (qi,j)i,j∈S directly from the rates of the exponential clocks, also setting
qi,i = −

∑
j∈S : j 6=i qi,j . To show that the process is a (ν,Q)-Markov chain, we have to show that

the system starts afresh in the new state after each transition, from i to j, say. What this means
is that the model assumptions and the theory of competing exponentials yield a full set of clocks
(residual or new) for the new state j, which is conditionally independent of the past given the
present state.

This part of the proof is different for each model and therefore needs to be repeated for each
model. The formalisation to actually establish the joint distributions as required for Definition
20 is rather technical and always essentially the same. Since it adds little insight into the model
(but some more insight into arguments involving conditional independence), we will only provide
this argument once (postponed to the non-examinable Section 4.6).

Example 31 (M/M/1 queue) Let us denote by Xt the number of customers in a single-server
queueing system at time t ≥ 0, including any customer currently being served, where we assume
that new customers arrive according to PP(λ), and that service times are independent Exp(µ).

Given a queue size of i ≥ 1, two transitions are possible. If a customer arrives (at rate λ),
then X increases to i+ 1. If the customer being served leaves (at rate µ), then X decreases to
i− 1. Given a queue size of i = 0, only the former can happen. This amounts to a Q-matrix

Q =


−λ λ 0 0 · · ·
µ −µ− λ λ 0 · · ·

0 µ −µ− λ λ
. . .

...
. . .

. . .
. . .

. . .

 .

If X0 = M0 ∼ ν, then X is indeed a (ν,Q)-Markov chain, by the following induction step.
Given state Mn = in ≥ 2 and two independent Exp(λ) and Exp(µ) clocks ticking, the theory of
competing exponential clocks (Exercise A.1.5 or Lemma 27) shows that the system starts afresh
in in + 1 (respectively in − 1) with the residual (respectively new) Exp(µ) service clock and the
new (respectively residual) Exp(λ) inter-arrival clock independent of the past. The case in = 1
is similar, except that for in − 1 = 0 no new service clock is set up. Also, for in = 0, no service
clock is ticking so the transition is always to in + 1. This completes the induction step.

Example 32 (M/M/s queue) If there are s ≥ 1 servers in the system, the rate at which
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customers leave is s-fold, provided there are at least s customers. We obtain the Q-matrix

−λ λ 0 0 · · · 0 0 0 · · ·
µ −µ− λ λ 0 · · · 0 0 0 · · ·

0 2µ −2µ− λ λ
. . . 0 0 0

. . .

0 0 3µ −3µ− λ . . . 0 0 0
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0
. . . −sµ− λ λ 0

. . .

0 0 0 0
. . . sµ −sµ− λ λ

. . .

0 0 0 0
. . . 0 sµ −sµ− λ . . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


which is better written as qi,i+1 = λ, i ≥ 0; qi,i−1 = iµ, 1 ≤ i ≤ s; qi,i−1 = sµ, i ≥ s;
qi,i = −iµ − λ, 0 ≤ i ≤ s; qii = −sµ − λ, i ≥ s; qij = 0 otherwise. A slight variation of the
argument for Example 31 shows that the M/M/s queue is a continuous-time Markov chain.

4.6 Checking joint distributions in Definition 20

This section is non-examinable. We demonstrate how to formalise the induction to fully prove that
M/M/1-queues (or other processes) are (ν,Q)-Markov chains in the sense of Definitions 20 and 24.

Induction hypothesis: (M0, . . . ,Mn) ∼ (ν,Π)-Markov chain and Zj ∼ Exp(λij ) independent condi-
tionally given M0 = i0, . . . ,Mn = in, with times An ∼ Exp(λ) to next arrival after Tn and Bn ∼ Exp(µ)
to next completed service after Tn (if in ≥ 1) independent conditionally given Mn = in.

Suppose in ≥ 2. By induction hypothesis, model specification and theory of competing exponentials,

P(M0 = i0, Z0 > z0,M1 = i1, . . . , Zn−1 > zn−1,Mn = in, Zn > zn,Mn+1 = in + 1, An+1 > s,Bn+1 > t)

= P(M0 = i0, Z0 > z0,M1 = i1, . . . , Zn−1 > zn−1,Mn = in)P(An+1 > s,Bn − t > An > zn|Mn = in)

=
(
νi0e

−λi0
z0πi0,i1 · · · e

−λin−1
zn−1πin−1,in

)(
πin,in+1e

−(λ+µ)zne−λse−µt
)
.

Arguments for Mn+1 = in − 1, and for in = 1 and in = 0 are similar. This completes the induction step.



Lecture 5

Transition probabilities

Reading: Norris 2.8, 3.1
Further reading: Grimmett-Stirzaker 6.8 (12)-(17), 6.9; Ross 6.4; Norris 2.7, 2.10

In this lecture we establish transition matrices P (t), t ≥ 0, for continuous-time Markov

chains. This family of matrices gives the analogues of n-step transition matrices Πn = (π
(n)
ij )i,j∈S,

n ≥ 0, for discrete-time Markov chains.

5.1 The semigroup property of transition matrices

As a consequence of the Markov property of continuous-time Markov chains, the probabilities
P(Xt+s = j|Xt = i) do not depend on t. We define

pij(s) := P(Xt+s = j|Xt = i) and P (s) = (pij(s))i,j∈S,

the time-s transition probabilities and time-s transition matrix.

Example 33 For a Poisson process with rate λ, we have for n ≥ 0 and j ≥ i ≥ 0

pi,i+n(t) =
(λt)n

n!
e−λt so that pij(t) =

(λt)j−i

(j − i)!
e−λt

by Remark 5. For fixed t ≥ 0 and i ≥ 0, these are Poi(λt) probabilities, shifted by i.

Proposition 34 {P (t), t ≥ 0} is a semigroup. Specifically, we have P (t)P (s) = P (t+ s) in the
sense of matrix multiplication for all t, s ≥ 0, and P (0) = I, the identity matrix.

Proof: Just note that for all i, k ∈ S

pik(t+ s) =
∑
j∈S

P(Xt+s = k,Xt = j|X0 = i)

=
∑
j∈S

P(Xt = j|X0 = i)P(Xt+s = k|Xt = j,X0 = i) =
∑
j∈S

pij(t)pjk(s)

where we applied the Markov property. 2

If t 7→ P (t) was a real-valued function, the functional equation P (t)P (s) = P (t+ s), P (0) =
1 would have solutions P (t) = etA for some real A. In the matrix-valued case, when S is
finite, this is still true, if we define etA =

∑
n≥0 t

nAn/n! where An is a matrix power, and the
series and multiplication by scalars are taken component-wise. Furthermore, component-wise
differentiation yields P ′(t) = P (t)A. We will see that the matrix A is in fact the Q-matrix
A = Q.

But first, we note that we can express finite-dimensional marginal distributions in terms of
transition probabilities:

Corollary 35 For a (ν,Q)-Markov chain X and any 0 = t0 < t1 < · · · < tn and i0, . . . , in ∈ S,
we have

P(Xt0 = i0, Xt1 = i1, . . . , Xtn = in) = νi0

n∏
j=1

pij−1,ij (tj − tj−1).

It will be useful to use notation Pi(·) if we have a fixed initial state X0 = i.

21
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5.2 Backward equations

Proposition 36 The transition matrices (P (t))t≥0 of a minimal (ν,Q)-Markov chain satisfy
the backward equation

P ′(t) = QP (t)

with initial condition P (0) = I, the identity matrix.
Given Q, (P (t))t≥0 is the unique solution to the backward equation if P(T∞ = ∞) = 1, in

particular if S is finite.
Furthermore, if P(T∞ < ∞) > 0, then (P (t))t≥0 is the minimal nonnegative solution in the sense

that all other nonnegative solutions (P̃ (t))t≥0 satisfy p̃ik(t) ≥ pik(t) for all i, k ∈ S, t ≥ 0.

Proof: We first show that (P (t))t≥0 solves P ′(t) = QP (t), i.e. for all i, k ∈ S, t ≥ 0

p′ik(t) =
∑
j∈S

qijpjk(t).

We start by a one-step analysis (using the strong Markov property at the first jump time T1, or
directly identifying the structure of the post-T1 process) to get

pik(t) = Pi(Xt = k) =

∫ ∞
0

Pi(Xt = k|T1 = s)λie
−λisds

= δike
−λit +

∫ t

0

∑
j∈S

Pi(Xt = k,Xs = j|T1 = s)λie
−λisds

= δike
−λit +

∫ t

0

∑
j∈S

Pi(Xt = k|Xs = j, T1 = s)Pi(Xs = j|T1 = s)λie
−λisds

= δike
−λit +

∫ t

0

∑
j∈S : j 6=i

pjk(t− s)πijλie−λisds

= δike
−λit +

∫ t

0

∑
j∈S : j 6=i

qijpjk(u)e−λi(t−u)du, (1)

i.e.

eλitpik(t) = δik +

∫ t

0

∑
j∈S : j 6=i

qijpjk(u)eλiudu.

Clearly this implies that pij is differentiable and we obtain

eλitp′ik(t) + λie
λitpik(t) =

∑
j∈S : j 6=i

qijpjk(t)e
λit,

which after cancellation of eλit and by λi = −qii is what we require.
The rest of this proof is non-examinable. Suppose now, we have another non-negative solution

p̃ij(t). Then, by integration, p̃ij(t) also satisfies the integral equations (1) (the δik come from the initial
conditions). Trivially

T0 = 0 ⇒ Pi(Xt = k, t < T0) = 0 ≤ p̃ik(t) for all i, k ∈ S and t ≥ 0.

If for some n ∈ N

Pi(Xt = k, t < Tn) ≤ p̃ik(t) for all i, k ∈ S and t ≥ 0,
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then as above

Pi(Xt = k, t < Tn+1) = e−qitδik +

∫ t

0

∑
j∈S : j 6=i

qijPj(Xu = k, u < Tn)e−λi(t−u)du

≤ e−qitδik +

∫ t

0

∑
j∈S : j 6=i

qij p̃jk(u)e−λi(t−u)du = p̃ik(t)

and therefore
pik(t) = lim

n→∞
Pi(Xt = k, t < Tn) ≤ p̃ik(t)

as required. We conclude that pik(t) is the minimal non-negative solution to the backward equation.

Finally, if P(Xt ∈ S) = P(T∞ > t) = 1 for all t ≥ 0, i.e. if P(T∞ =∞) = 1, then the solution is unique

since any strictly larger solution would have
∑
j∈S p̃ij(t) >

∑
j∈S pij(t) = 1 for some i ∈ S and t ≥ 0, so

that (P̃ (t))t≥0 = (p̃ij(t))t≥0 is not a family of transition matrices. If S is finite, then λ = max{λi, i ∈ S}
is finite, and the construction from Zn = En/λMn

from (Mn, n ≥ 0) and independent En ∼ Exp(1),

n ≥ 0, shows that Tn ≥ (E0 + · · ·+ En−1)/λ→∞ a.s., by the Strong Law of Large Numbers (stated in

Part A, see also Lecture 9 here). 2

“Other nonnegative solutions” are related to non-minimal extensions of explosive Markov chains.

Corollary 37 Let Q be a Q-matrix. Then the backward equation

P ′(t) = QP (t), P (0) = I

has a minimal non-negative solution (P (t), t ≥ 0). This solution forms a semigroup

P (s)P (t) = P (s+ t) for all s, t ≥ 0.

5.3 Forward equations

Proposition 38 The transition matrices (P (t))t≥0 of a minimal (ν,Q)-Markov chain satisfy
the forward equation

P ′(t) = P (t)Q

with initial condition P (0) = I, the identity matrix. Given Q, (P (t))t≥0 is the unique solution
to the forward equation if P(T∞ <∞) = 0, in particular if S is finite.

Furthermore, if P(T∞ < ∞) > 0, then (P (t))t≥0 is the minimal nonnegative solution in the sense

that any other nonnegative solutions (P̃ (t))t≥0 satisfy p̃ik(t) ≥ pik(t) for all i, k ∈ S, t ≥ 0.

The proof is very similar to the proof we used for the bacward equation, but this time,
instead of conditioning on the first jump, we condition on the last jump.

Proof: For the case S finite, see Exercise A.4.3 for one argument. If S is infinite, another
argument, in fact a variation of the argument of Proposition 36 works, conditioning on the last
jump before t. Since this is not a stopping time, the Markov property does not apply and certain
calculations have to be done “by hand”. See Norris Theorem 2.8.6. for details (non-examinable).

2

Remark 39 Transition semigroups and the Markov property can form the basis for a definition
of continuous-time Markov chains. In order to obtain a definition that is equivalent to Definition
20, we can say that a (ν,Q)-Markov chain is a process such that t 7→ Xt is right-continuous in
S and such that

P(Xtn+1 = in+1|Xt0 = i0, . . . , Xtn = in) = pin,in+1(tn+1 − tn)

for all 0 = t0 < t1 < · · · < tn+1 and i0, . . . , in+1 ∈ S, where P (t) satisfies the forward equations.
See Norris 2.8.
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5.4 Examples

Solving forward or backward equations can be done by a computer, since they are just systems
of linear ordinary differential equations. The forward equations have the distinct advantage that
the unknown pi,·(·) for fixed i appears on both sides of the equation, and (in the non-explosive
case), we know that summing transition probabilities pi,j(t) over j gives 1. This “extra equation”
can simplify the calculations. As always, the situation is particularly nice for the Poisson process:

Example 40 (Poisson process, forward equations) For the Poisson process qi,i+1 = λ,
qi,i = −λ, qi,j = 0 otherwise, hence we have forward equations

p′i,i(t) = −pi,i(t)λ, i ∈ N
p′i,i+n(t) = pi,i+n−1(t)λ− pi,i+n(t)λ, i ∈ N, n ≥ 1

and it is easily seen inductively (fix i and proceed n = 0, 1, 2, . . .) that Poisson probabilities

pi,i+n(t) =
(λt)n

n!
e−λt

are the unique solutions under boundary conditions pi,i+n(0) = δn,0. Writing i+n rather than j
is convenient because of the stationarity of increments in this special case of the Poisson process.

Example 41 (Poisson process, backward equations) Alternatively, we may consider the
backward equations for the Poisson process

p′j,j(t) = −λpj,j(t), j ∈ N
p′i,j(t) = λpi+1,j(t)− λpi,j(t), i, j ∈ N, j ≥ i+ 1

and solve inductively (fix j and proceed i = j, j − 1, . . . , 0).

We have seen an easier way to derive the Poisson transition probabilities in Remark 5. The
link between the two ways is revealed by the passage to probability generating functions

Gi(z, t) = Ei
(
zXt
)

which then have to satisfy differential equations

∂

∂t
Gi(z, t) =

∞∑
n=0

zi+np′i,i+n(t) = λ(z − 1)Gi(z, t), Gi(z, 0) = Ei(zX0) = zi.

Solutions for these equations are obvious. In general, if we have Gi sufficiently smooth in t
and z, we can derive from differential equations for probability generating functions differential
equations for moments mi(t) = Ei(Xt) = ∂

∂zGi(z, t)
∣∣
z=1− that yield here

m′i(t) =
∂

∂z

∂

∂t
Gi(z, t)

∣∣∣∣
z=1−

= λ Gi(z, t)|z=1− = λ, mi(0) = Ei(X0) = i.

Often (even in this case), this can be solved more easily than the differential equation for
probability generating functions. Together with a similar equation for the variance, we can
capture what are often the two most important distributional features of a model.
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The class structure of
continuous-time Markov chains

Reading: Norris 3.2-3.5
Further reading: Grimmett-Stirzaker 6.9

In this lecture, we introduce for continuous-time chains the notions of irreducibility and
positive recurrence that will be needed for the convergence theorems in Lecture 8.

6.1 Communicating classes and irreducibility

We define the class structure characteristics as for discrete-time Markov chains. We emphasize
that from now on we deal only with minimal Markov chains, those that die after explosion.

Definition 42 Let X be a continuous-time Markov chain.

(a) We say that i ∈ S leads to j ∈ S and write i→ j if

Pi(Xt = j for some t ≥ 0) = Pi(T{j} <∞) > 0, where T{j} = inf{t ≥ 0 : Xt = j}.

(b) We say i ∈ S communicates with j ∈ S and write i↔ j if both i→ j and j → i.

(c) An equivalence class of the equivalence relation ↔ on S is called a (communicating) class.

(d) A class A ⊂ S is closed if there is no i ∈ A, j ∈ S−A with i→ j, i.e. X cannot leave A.

(e) i is an absorbing state if {i} is a closed class.

(f) X is irreducible if S is a communicating class (the only one).

In the following we denote by M = (Mn)n≥0 the jump chain and by (Zn)n≥0 the holding times
that we used in the definition of a continuous-time Markov chain X = (Xt)t≥0, in Definition 20.

Proposition 43 Let X be a minimal (i.e. T∞ = ∞ or Xt = ∞ for t ≥ T∞) continuous-time
Markov chain. For i, j ∈ S, i 6= j, the following are equivalent

(i) i→ j for X.

(ii) i→ j for the jump chain M .

(iii) There is a sequence (i0, . . . , in), ik ∈ S, from i0 = i to in = j such that
n−1∏
k=0

qik,ik+1
> 0.

(iv) pi,j(t) > 0 for all t > 0.

(v) pi,j(t) > 0 for some t > 0.
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Lecture 6: The class structure of continuous-time Markov chains 26

Proof: Implications (iv)⇒(v)⇒(i)⇒(ii) are straightforward.
(ii)⇒(iii): From the discrete-time theory, we know that i→ j for M implies that there is a

path (i0, . . . , in) from i to j with

n−1∏
k=0

πik,ik+1
> 0, hence

n−1∏
k=0

qik,ik+1
=

n−1∏
k=0

πik,ik+1
λik > 0

since λm = 0 if and only if πm,m = 1.
(iii)⇒(iv) If qi,j > 0, then we can get a lower bound for pi,j(t) by only allowing one transition

in [0, t] by

pi,j(t) ≥ Pi(Z0 ≤ t,M1 = j, Z1 > t)

= Pi(Z0 ≤ t)Pi(M1 = j)P(Z1 > t|M1 = j)

= (1− e−λit)πi,je−λjt > 0

for all t > 0, hence in general for the path (i0, . . . , in) given by (iii)

pi,j(t) = Pi(Xt = j) ≥ Pi(Xkt/n = ik for all k = 1, . . . , n)

=
n−1∏
k=0

pik,ik+1
(t/n) > 0

for all t > 0. For the last equality, we used the Markov property which implies that for all
m = 1, . . . , n

P(Xmt/n = im|Xkt/n = ik for all k = 0, . . . ,m− 1) = P(Xmt/n = im|X(m−1)t/n = im−1)

= pim−1,im(t/n).
2

Condition (iv) shows that the situation is simpler than in discrete-time where it may be
possible to reach a state, but only after a certain length of time, and then only periodically.

Example 44 (M/M/1 queue) The M/M/1 queue with qi,i+1 = λ > 0 and qi+1,i = µ >
0, i ≥ 0, is irreducible: for all m > n ≥ 0, we have qm,m−1 · · · qn+1,n = µm−n > 0 and
qn,n+1 · · · qm−1,m = λm−n > 0 and Proposition 43 yields m↔ n.

Example 45 (Simple birth-and-death process) The simple birth and death process with

qi,i+1 = iλ, qi,i−1 = iµ, qi,i = −(λ+ µ)i, qi,j = 0 otherwise, i ≥ 0,

has 0 as an absorbing state, while N\{0} is an open communicating class by the same argument
as in Example 44.

6.2 Recurrence and transience, positive and null recurrence

Definition 46 Let X be a continuous-time Markov chain.

(a) i ∈ S is called recurrent if Pi({t ≥ 0: Xt = i} is unbounded) = 1.

(b) i ∈ S is called transient if Pi({t ≥ 0: Xt = i} is unbounded) = 0.

X is called recurrent (transient) if all states i ∈ S are recurrent (transient) for X.

Remark 47 If X can explode starting from i and if X is a minimal continuous-time Markov
chain, then i is certainly not recurrent. Hence, whenever we assume minimality and recurrence,
this implies that X is non-explosive.



Lecture 6: The class structure of continuous-time Markov chains 27

We denote by Ni = inf{n ≥ 1 : Mn = i} the first passage time of M to state i, and by

Hi = TNi = inf{t ≥ T1 : Xt = i},

the first passage time of X to state i. Note that we require the chain to do at least one jump.

This is to force X to leave i first if X0 = i. We also define the successive passage times N
(1)
i = Ni

and N
(m)
i = inf{n > N

(m−1)
i : Mn = i}, m ≥ 2, and H

(m)
i = T

N
(m)
i

, m ≥ 1.

Proposition 48 i ∈ S is recurrent (transient) for a minimal continuous-time Markov chain X
if and only if i is recurrent (transient) for the jump chain M .

Proof: Suppose, i is recurrent for the jump chain M , i.e. M visits i infinitely often, at steps

(N
(m)
i )m≥1. If we denote by 1{X0=i} the random variable that is 1 if X0 = i and 0 otherwise,

the total amount of time that X spends at i is

Z01{X0=i} +
∞∑
m=1

Z
N

(m)
i

=∞

with probability 1 by the argument for Proposition 12 (convergent and divergent sums of inde-
pendent exponential variables) since Z

N
(m)
i

∼ Exp(λi) and the sum of their (identical!) inverse

parameters is infinite. In particular {t ≥ 0 : Xt = i} must be unbounded with probability 1.
Suppose, i is transient for the jump chain M , then there is a last step L < ∞ away from i

and {t ≥ 0 : Xt = i} ⊂ [0, TL) is bounded with probability 1.
The inverse implications are now obvious since i can only be either recurrent or transient for

M and we constructed all minimal continuous-time Markov chains from jump chains. 2

From this result and the analogous properties for discrete-time Markov chains, we deduce

Corollary 49 Every state i ∈ S is either recurrent or transient for X.

Recall that a class property is a property of states that either all states in a (communicating)
class have or all states in a (communicating) class don’t have.

Corollary 50 Recurrence and transience are class properties.

Proof: If i is recurrent and i↔ j, for X, then i is recurrent and i↔ j for M . From discrete-time
Markov chain theory, we know that j is recurrent for M . Therefore j is recurrent for X.

The proof for transience is similar. 2

Proposition 51 For any i ∈ S the following are equivalent:

(i) i is recurrent for X.

(ii) λi = 0 or Pi(Hi <∞) = 1.

(iii)

∫ ∞
0

pii(t)dt =∞.

Proof: (iii)⇒(ii): One can deduce this from the corresponding discrete-time result, but we give
a direct argument here. Assume λi > 0 and hi = Pi(Hi = ∞) > 0. Then, the strong Markov

property at H
(m)
i states that, given H

(m)
i <∞, the post-H

(m)
i process X(m+1) = (X

H
(m)
i +t

)t≥0 is

distributed as X and independent of the pre-H
(m)
i process. By independent trials (success being

not to return to i), the total number G of visits of X to i must have a geometric distribution
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with parameter hi, and is independent of the Exp(λi)-holding times in i. Therefore, the total
time spent in i is G−1∑

m=0

Z
N

(m)
i

∼ Exp(hiλi).

With notation 1{Xt=i} = 1 if Xt = i and 1{Xt=i} = 0 otherwise, we obtain by Tonelli’s theorem∫ ∞
0

pii(t)dt =

∫ ∞
0

Ei(1{Xt=i})dt = Ei
(∫ ∞

0
1{Xt=i}dt

)
= Ei

(
G−1∑
m=0

Z
N

(m)
i

)
=

1

hiλi
<∞.

The other implications can be established using similar arguments. 2

As in the discrete-time case, there is a link between recurrence and the existence of invariant
distributions. More precisely, recurrence is strictly weaker. The stronger notion required for the
existence of invariant distributions is positive recurrence:

Definition 52 A recurrent state i ∈ S is called positive recurrent if either λi = 0 or mi :=
Ei(Hi) <∞. Otherwise, we call i null recurrent.

Proposition 53 Positive recurrence is a class property.

Proof: Suppose Ei(Hi) <∞ and i→ j. Then p = Pi(Hj < Hi) > 0 and

pEi(Hi|Hj < Hi) + (1− p)Ei(Hi|Hj > Hi) = Ei(Hi) <∞.

Hence Ei(Hj |Hj < Hi) < Ei(Hi|Hj < Hi) <∞. By independent trials,

Ei(Hj) = (1/p− 1)Ei(Hi|Hj > Hi) + Ei(Hj |Hj < Hi) <∞.

By the Strong Markov property at Hj , also Ej(Hi) ≤ Ei(Hi|Hj < Hi) <∞. Finally, Ej(Hj) ≤
Ej(Hi) + Ei(Hj) <∞, as required. 2

Positive recurrence for a continuous-time Markov chain and its jump chain are not equivalent.

Example 54 (M/M/1 queue) The M/M/1 queue with λ > 0 and µ > 0 is positive recurrent
if λ < µ, null recurrent if λ = µ and transient if λ > µ.

Specifically, λ > µ means that customers arrive at a higher rate than they leave. Intuitively,
this means that Xt → ∞ (this can be shown by comparison of the jump chain with a simple
random walk with up probability λ/(λ + µ) > 1/2). As a consequence, Li = sup{t ≥ 0 : Xt =
i} <∞ for all i ∈ N, and since {t ≥ 0 : Xt = i} ⊂ [0, Li], we deduce that i is transient.

λ < µ means that customers arrive at a slower rate than they can leave. Intuitively, this
means that Xt will return to zero infinitely often. The mean of the return time can be estimated
by comparison of the jump chain with a simple random walk with up probability λ/(λ+µ) < 1/2:

E0(H0) = E

(
N0−1∑
k=0

Zk

)
=
∞∑
n=2

P(N0 = n)E

(
n−1∑
k=0

Zk

∣∣∣∣∣N0 = n

)

=
1

λ
+

∞∑
n=2

P(N0 = n)E

(
n−1∑
k=1

Yk

)

=
1

λ
+

∞∑
n=2

P(N0 = n)
n− 1

λ+ µ
=

1

λ
+

E0(N0)− 1

λ+ µ
<∞,

where Y1, Y2, . . . ∼ Exp(λ+ µ). Therefore, 0 is positive recurrent. Since positive recurrence is a
class property, all states are positive recurrent.

For λ = µ, the same argument shows that 0 is null-recurrent, by comparison with simple
symmetric random walk.

Note in each case, that the jump chain is not a simple random walk, but coincides with a
simple random walk until it hits zero. This is enough to calculate E0(N0).



Lecture 7

Invariant distributions and time
reversal

Reading: Norris 3.5, 3.7
Further reading: Grimmett-Stirzaker 6.9; Ross 6.5

In Lecture 7 we studied the class structure of continuous-time Markov chains. We can
summarize the findings by saying that the state space can be decomposed into (disjoint) com-
municating classes S =

⋃
m∈I1

Tm ∪
⋃
m∈I2

Nm ∪
⋃
m∈I3

Pm,

for countable index sets I1, I2 and I3, where the (states in) Pm are positive recurrent, hence
closed, the Nm null recurrent, hence closed, and the Tm transient, open or closed. This is similar
for the jump chain, but while transience holds for a class of the continuous-time chain if and
only if it holds for the jump chain, this equivalence fails for positive recurrence, in general.

To understand equilibrium behaviour, we can look at each recurrent class separately. The
complete picture can then be put together from its pieces on the separate classes. This is relevant
in some applications, but not for the majority, and not for those most relevant to us. We therefore
focus mainly on the case where we have only one class. We called this case “irreducible”. The
reason for this name is that we cannot further “reduce” the state space without changing the
transition probabilities. We will further focus on the positive recurrent case.

7.1 Invariant distributions

Note that for an initial distribution ν on S, X0 ∼ ν we have

P(Xt = j) =
∑
i∈S

P(X0 = i)P(Xt = j|X0 = i) = (νP (t))j

where νP (t) is the product of a row vector ν with the matrix P (t), and we extract the jth
component of the resulting row vector.

Definition 55 A distribution ξ on S is called invariant for a continuous-time Markov chain if
ξP (t) = ξ for all t ≥ 0.

If X0 ∼ ξ for an invariant distribution ξ, then Xt ∼ ξ for all t ≥ 0. We therefore also say
that ξ is a stationary distribution of X, and we then refer to X as a stationary Markov chain.

Proposition 56 In the non-explosive case, in particular when S is finite, ξ is invariant if and
only if ξQ = 0.

Proof: We only prove the case of finite S. If ξP (t) = ξ for all t ≥ 0, then by the forward
equation

ξQ = ξP (t)Q = ξP ′(t) = ξ lim
h→0

P (t+ h)− P (t)

h
= lim

h→0

ξP (t+ h)− ξP (t)

h
= 0.

If ξQ = 0, we have

ξP (t) = ξP (0) + ξ

∫ t

0
P ′(s)ds = ξ +

∫ t

0
ξQP (s)ds = ξ

by the backward equation. Here, also the integration is understood component-wise.

29
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Interchanging limits/integrals and matrix multiplication is justified since S is finite. For the
(non-explosive) infinite case, see Norris Theorem 3.5.5. 2

In the explosive case, the equation ξQ = 0 may have solutions that are not invariant, see
Norris Example 3.5.4.

Proposition 57 For a vector ξ let ηi = λiξi, i ∈ S. Then ξQ = 0 if and only if ηΠ = η.

Proof: We have (η(Π− I))j =
∑
i∈S

ξiλi(πij − δij) =
∑
i∈S

ξiqij = (ξQ)j . for all j ∈ S. 2

Note that the entries of ξ and η do not have to sum to 1. However, if ξ they are positive and
sum to something finite, they can be normalised to give stationary distributions, e.g. always
when S is finite.

Proposition 58 An irreducible (minimal) non-explosive continuous-time Markov chain is pos-
itive recurrent if and only if it has an invariant distribution. An invariant distribution ξ can
then be given by

ξi =
1

miλi
, i ∈ S,

where mi = Ei(Hi) is the mean return time to i and λi = −qii the holding rate in i.

The analogous result for discrete chains holds and gives ηi = 1/Ei(Ni) as invariant distribu-
tion. The further factor λi occurs because a chain in stationarity is likely to be found in i if the
return time is short and the holding time is long; both observations are reflected through the
inverse proportionality to mi and λi, respectively.

Proof: When S is finite, irreducibility implies positive recurrence, since p= infj∈S Pj(Hi ≤ 1)
≥ pj,i(1) > 0 and by the Markov property at integer times, repeated trials with success proba-
bilities bounded below by p get us from any j to i in a random time with expectation bounded
by 1/p, hence mi ≤ 1/λi + 1/p < ∞. When S is finite, there is an invariant distribution by
the previous proposition, since this holds for the jump chain. We will deduce the form of the
invariant distribution from the Convergence theorem and a version of the Ergodic theorem in
Assignment 5.5(d). When S is finite, this will complete the proof.

When S is infinite, we still need the equivalence of positive recurrence and the existence of
an invariant distribution to prove the Convergence Theorem. See Norris Theorem 3.5.3 for a
direct proof. 2

Example 59 Consider the M/M/1 queue of Example 31. The equations ξQ = 0 are given by

−λξ0 + µξ1 = 0, λξi−1 − (λ+ µ)ξi + µξi+1 = 0, i ≥ 1.

This system of linear equations (for the unknowns ξi, i ∈ N) has a probability function as its
solution if and only if λ < µ. It is given by the geometric probabilities

ξi =

(
λ

µ

)i(
1− λ

µ

)
, i ∈ N.

By Proposition 58, we can calculate Ei(Hi) = mi = 1/(λiξi). In particular, for i = 0, we have
the length of a full cycle beginning and ending with an empty queue. Since the initial empty
period has average length 1/λ, the busy period has length

E0(H0)− 1/λ =
1

λ (1− λ/µ)
=

1

µ− λ
.

Note that this tends to infinity as λ ↑ µ.
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7.2 Detailed balance equations and time reversal

Proposition 60 Consider the Q-matrix Q of a non-explosive Markov chain. If the detailed
balance equations

ξiqij = ξjqji, i, j ∈ S,
have a solution ξ = (ξi)i∈S, then ξ is a stationary distribution.

Proof: Let ξ be such that all detailed balance equations hold. Then fix j ∈ S and sum the
equations over i ∈ S to get

(ξQ)j =
∑
i∈S

ξiqij =
∑
i∈S

ξjqji = ξj
∑
i∈S

qji = 0

since the row sums of any Q-matrix vanish (see Remark 25). Therefore ξQ = 0, as required. 2

Note that (in the case of finite #S = n), while ξQ = 0 is a set of as many equations as
unknowns, n, the detailed balance equations form a set of n(n − 1)/2 different equations for n
unknowns, so one would not expect solutions, in general. However, if the Q-matrix is sparse,
i.e. contains lots of zeros, corresponding equations will be automatically satisfied, and these are
the cases where we will successfully apply detailed balance equations.

The class of continuous-time Markov chains for which the detailed balance equations have
solutions can be studied further. They also arise naturally in the context of time reversal, a tool
that may seem of little practical relevance, since our world lives forward in time, but sometimes
it is useful to model by a random process an unknown past. Sometimes, one can identify a
duality relationships between two different processes, both forward in time that reveals that the
behaviour of one is the same as the behaviour of the time reversal of the other. This can allow
to translate known results for one into interesting new results for the other.

Proposition 61 Let X be an irreducible positive recurrent (minimal) continuous-time Markov
chain with Q-matrix Q and starting from the invariant distribution ξ. Let t > 0 be a fixed time
and X̂s = Xt−s−. Then the process X̂ is a continuous-time Markov chain with Q-matrix Q̂ given
by ξj q̂ji = ξiqij.

Proof: First note that Q̂ has the properties of a Q-matrix in being non-negative off the diagonal
and satisfying ∑

i∈S
q̂ji =

∑
i∈S

ξi
ξj
qij =

1

ξj
(ξQ)j = 0

by the invariance of ξ. Similarly, we define ξj p̂ji(t) = ξipij(t) and see that P̂ (t) have the
properties of transition matrices. In fact the transposed forward equation P ′(t) = P (t)Q yields
P̂ ′(t) = Q̂P̂ (t), the backward equation for P̂ (t). Now X̂ is a continuous-time Markov chain with
transition probabilities P̂ (t) since

Pξ(X̂t0 = i0, . . . , X̂tn = in) = Pξ(Xt−tn = in, . . . , Xt−t0 = i0)

= ξin

n∏
k=1

pik,ik−1
(tk − tk−1)

= ξi0

n∏
k=1

p̂ik−1,ik(tk − tk−1).

From this we can deduce the Markov property. More importantly, the finite-dimensional dis-
tributions of X̂ are the ones of a continuous-time Markov chain with transition matrices P̂ (t).
Together with right-continuity, Remark 39 implies that X̂ is a Markov chain with Q-matrix Q̂.

2

If Q̂ = Q, X is called reversible. It is evident from the definition of Q̂ that ξ then satisfies
the detailed balance equations ξiqij = ξjqji, i, j ∈ S.
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7.3 Simple birth-and-death processes and Erlang’s formula

Consider the general simple birth-and-death process with birth rates qi,i+1 = βi and death rates
qi,i−1 = γi, qii = −βi − γi, i ∈ N, all other entries zero, and also γ0 = 0. We recognise simple
birth processes and queueing models as special cases.

To calculate invariant distributions, we solve the balance equations ξQ = 0, i.e.

ξ1γ1 − ξ0β0 = 0 and ξn+1γn+1 − ξn(βn + γn) + ξn−1βn−1 = 0, n ≥ 1

or more easily the detailed balance equations

ξiβi = ξi+1γi+1, i ≥ 0.

giving
ξn =

βn−1 · · ·β0
γn · · · γ1

ξ0, n ≥ 0,

where ξ0 is determined by the normalisation requirement of ξ to be a probability function, i.e.

ξ0 =
1

S
where S = 1 +

∞∑
n=1

βn−1 · · ·β0
γn · · · γ1

provided S is finite. Assuming non-explosion, we have found an invariant distribution, and we
will see it is unique since the state space is irreducible. (We can get a sufficient condition for
non-explosion, by ignoring deaths to find a simple birth process with rates λn = βn, for which
the explosion criterion applies.)

If S is infinite there does not exist an invariant distribution. This cannot be deduced directly
from the detailed balance equations but for general simple birth-and-death processes here it is
easy to see inductively that ξQ = 0 is equivalent to the detailed balance equations (the first
equation is the same, the other balance equations are differences of consecutive detailed balance
equations). The fact that there is no probability measure such that ξ such that ξQ = 0 does not
necessarily mean there is explosion in finite time, infact S = ∞ for all simple birth processes
since they model growing populations and cannot be in equilibrium. By Proposition 58, it means
that X is then null recurrent or transient. On the other hand, if β0 = 0 as in many population
models, then the invariant distribution is concentrated in 0, i.e. ξ0 = 1, ξn = 0 for all n ≥ 1.

Many special cases can be given more explicitly.

Example 62 If βn = λ, n ≥ 0, γn = nµ, we get

ξn =
(λ/µ)n

n!
e−λ/µ, n ≥ 0,

Poisson probabilities. What is this model? We can give two different interpretations both of
which tie in with models that we have studied. First, as a population model, βn = λ means
that arrivals occur according to a Poisson process, this can model immigration; γn = nµ is
obtained from as many Exp(µ) clocks as individuals in the population, i.e. independent Exp(µ)
lifetimes for all individuals, an immigration-death model. Second, as a queueing model with
arrivals according to a Poisson process, each individual leaves the system after an Exp(µ) time,
no matter how many other people are in the system – this can be obtained from infinitely many
servers working at rate µ, an M/M/∞-queue.

Example 63 (Erlang’s formula) If βn = λ, 0 ≤ n ≤ s − 1, and γn = nµ, we obtain a
model for a telephone exchange with s lines, where calls arrive according to PP(λ) and have
independent Exp(µ) durations. Of particular interest is the probability of having all lines busy.
A slight variant of the formulas in the previous example yields

ξs =
(λ/µ)s

s!

/
s∑

n=0

(λ/µ)n

n!
.

This is known as Erlang’s formula.



Lecture 8

Convergence theorems

Reading: Norris 3.6, 3.8; Grimmett-Stirzaker 7.2
Further reading: Williams “Probability with Martingales” 7.2; Grimmett-Stirzaker 7.1, 7.3-7.5

The Convergence Theorem and the Ergodic Theorem for continuous-time Markov chains,
which we will discuss in this lecture, are two very different statements of convergence to a
stationary distribution. We begin this lecture by reviewing modes of convergence. We also
prove the Strong Law of Large Numbers.

8.1 Modes of convergence

Definition 64 Let Xn, n ≥ 1, and X be real-valued random variables. Then we define

1. Xn → X in probability, if for all ε > 0, P(|Xn −X| > ε)→ 0 as n→∞.

2. Xn → X in distribution, if P(Xn ≤ x) → P(X ≤ x) as n → ∞, for all x ∈ R at which
x 7→ P(X ≤ x) is continuous.

3. Xn → X in L1, if E(|Xn|) <∞ for all n ≥ 1 and E(|Xn −X|)→ 0 as n→∞.

4. Xn → X almost surely (a.s.), if P(Xn → X as n→∞) = 1.

The following result from Part A will be useful.

Proposition 65 The following implications hold

Xn → X almost surely
⇓

Xn → X in probability ⇒ Xn → X in distribution
⇑

Xn → X in L1 ⇒ E(Xn)→ E(X)

No other implications hold in general.

For N-valued random variables X and Xn, n ≥ 1, convergence Xn → X in distribution is
equivalent to

P(Xn = j)→ P(X = j), as n→∞, for all j ∈ N,

as P(Xn=j) = P(Xn≤j+1/2)−P(Xn≤j−1/2) and P(Xn≤x) = P(Xn=0) + · · ·+P(Xn=bxc).
It is therefore natural to define for S-valued random variables Xn → X in distribution

P(Xn = j)→ P(X = j), as n→∞, for all j ∈ S.

8.2 The convergence theorem and the ergodic theorem

The Convergence theorem for Markov chains is of central importance in applications since is
it often assumed that “a system is in equilibrium”. The convergence theorem is a justification
for this assumption, since it means that a system must only be running long enough to be
(approximately) in equilibrium. Recall that an “invariant distribution” (ξP (t) = ξ for all t ≥ 0)
is also called “stationary distribution” (since X0 ∼ ξ ⇒ Xt ∼ ξ for all t ≥ 0). We will now see
that ξ is also “equilibrium distribution”, i.e. Xt ∼ ξ approximately for large t even if X0 ∼ ν 6= ξ.

33
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Theorem 66 Let X = (Xt)t≥0 be a (minimal) irreducible positive-recurrent continuous-time
Markov chain, X0 ∼ ν, and ξ an invariant distribution, then

P(Xt = j)→ ξj as t→∞ for all j ∈ S.

This result can be deduced from the Convergence theorem for discrete-time Markov chains

by looking at the processes Z
(h)
n = Xnh, n ≥ 0, for each fixed h > 0. The process Z(h) is easily

seen to be a discrete-time Markov chains with transition matrix P (h).
However, it is more instructive to see a (very elegant) direct argument, using the coupling

method in continuous time.

Sketch of proof: Let X ∼ (ν,Q)-Markov chain and Y ∼ (ξ,Q)-Markov chain independent.
Choose i ∈ S and define T = inf{t ≥ 0 : (Xt, Yt) = (i, i)} the time they first meet (in i, to
simplify the argument). A third process is constructed

X̃t =

{
Xt if t < T,
Yt if t ≥ T.

The following three steps complete the proof:

1. P(T < ∞) = 1 – this is because ηi,j = ξiξj , (i, j) ∈ S2, is invariant for (X,Y ), which
implies positive recurrence of (X,Y ), by Proposition 58, and by irreducibility expected
hitting times from any fixed starting point are finite (see the proof of Proposition 53), and
hence hitting times from any random starting point are finite with probability 1;

2. X̃ ∼ (ν,Q)-Markov chain just as X;

3. |P(Xt = j)− ξj | =
∣∣∣E(1{X̃t=j})− E(1{Yt=j})

∣∣∣ ≤ E(1{T>t}) = P(T > t)→ 0.
2

Corollary 67 A (minimal) positive recurrent irreducible continuous-time Markov chain has a
unique stationary distribution.

Proof: For ν and ξ stationary and j ∈ S, we have νj = P(Xt = j)→ ξj as t→∞, so ν = ξ. 2

Theorem 68 (Ergodic theorem) In the setting of Theorem 66, X0 ∼ ν

P
(

1

t

∫ t

0
1{Xs=i}ds→ ξi as t→∞

)
= 1

Proof: A proof using renewal theory is in Exercise A.5.4. 2

We interpret this as follows. For any initial distribution, the long-term proportions of time
spent in any state i approaches the invariant probability for this state. This result establishes
a time-average analogue for the distributional average of Theorem 66. This is of practical
importance, since it allows us to observe the invariant distribution by looking at time proportions
over a long period of time. If we tried to observe the stationary distribution using Theorem 66,
we would need many independent observations of the same system at a large time t to estimate
ξ, using the Strong Law of Large Numbers, see Example 74.

Example 69 For the M/M/1 queue, we calculated in Example 59 that the stationary proba-
bility of the idle state is ξ0 = 1 − λ/µ. By Theorem 66, this is the probability for a customer
to find the server idle if the system has been running for a long time. By Theorem 68, this is
the asymptotic proportion of time that the server is idle (which in some applications means the
server is not earning any money).
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8.3 The Strong Law of Large Numbers

Key to the proof of Ergodic theorems is the Strong Law of Large Numbers, which was stated,
but not proved in Part A.

Theorem 70 Let (Yn)n≥1 be a sequence of independent and identically distributed random vari-
ables with E(|Y1|) <∞ and E(Y1) = µ. Let Sn = Y1 + · · ·+ Yn, n ≥ 1. Then

Sn
n

=
1

n

n∑
i=1

Yi → µ almost surely.

The proof for the general result is lengthy (or requires techniques beyond this course), but
under the extra moment condition E(Y 4

1 ) <∞ there is a nice proof, which ultimately exploits an
argument we employed in the proof of the explosion criterion, Proposition 12: if

∑
E(Zj) <∞,

then
∑
Zj <∞ with probability 1.

Lemma 71 In the situation of Theorem 70, there is a constant K <∞ such that for all n ≥ 0

E((Sn − nµ)4) ≤ 4E(Ỹ 4
1 )n2 ,

where Ỹk = Yk − µ.

Proof: Let S̃n = Ỹ1 + · · ·+ Ỹn = Sn − nµ. Then

E
(
S̃4
n

)
= E

( n∑
i=1

Ỹi

)4
 = E

 n∑
i,j,k,`=1

ỸiỸj ỸkỸ`

 = nE(Ỹ 4
1 ) + 6

(
n

2

)
E(Ỹ 2

1 Ỹ
2
2 )

by expanding the fourth power and noting that most terms vanish such as

E(Ỹ1Ỹ
3
2 ) = E(Ỹ1)E(Ỹ 3

2 ) = 0.

Finally observe that 4 max{E(Ỹ 4
1 ), (E(Ỹ 2

1 ))2} = 4E(Ỹ 4
1 ) by Jensen’s inequality and n ≤ n2 for

n ≥ 0. 2

Proof of Theorem 70 when E(Y 4
1 ) <∞: By the lemma,

E

((
Sn
n
− µ

)4
)
≤ E(Ỹ 4

1 )n−2 ≤ Kn−2∞ .

for some K > 0 independent of n. Now, by Tonelli’s theorem,

E

( ∞∑
n=1

(
Sn
n
− µ

)4
)

=
∞∑
n=1

E

((
Sn
n
− µ

)4
)
<∞ ⇒

∞∑
n=1

(
Sn
n
− µ

)4

<∞ a.s.

But if a series converges, the underlying sequence converges to zero, and so(
Sn
n
− µ

)4

→ 0 almost surely ⇒ Sn
n
→ µ almost surely.

2

8.4 Examples

Example 72 (Poisson process) For X ∼ PP(λ), we have arrival times Tn = Z0 + · · ·+Zn−1
for Zi ∼ Exp(λ) independent. The Strong Law of Large Numbers yields

Tn
n
→ 1

λ
almost surely, as n→∞.
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Since X itself has stationary independent increments, we also have

Xn

n
=

1

n

n∑
i=1

(Xi −Xi−1)→ E(X1) = λ almost surely, as n→∞.

Furthermore, we can use the sandwich theorem and algebra of limits to deduce

[t]

t

X[t]

[t]
≤ Xt

t
≤
X[t]+1

[t] + 1

[t] + 1

t
⇒ Xt

t
→ λ almost surely, as t→∞.

Example 73 (Return times of Markov chains) For a M ∼ (ν,Π)-Markov chain positive
recurrent, recall notation

Ni = N
(1)
i = inf{n > 0 : Mn = i}, N

(m+1)
i = inf{n > N

(m)
i : Mn = i}, m ∈ N,

for the successive return times to i ∈ S. By the strong Markov property, the random variables

N
(m+1)
i −N (m)

i , m ≥ 1, are independent and identically distributed. If we define N
(0)
i = 0 and

ν = δi, then this holds for all m ≥ 0. The Strong Law of Large Number yields

N
(m)
i

m
→ Ei(Ni) almost surely, as m→∞.

Similarly, for a positive recurrent (ν,Q)-Markov chain X, for

Hi = H
(1)
i = inf{t ≥ T1 : Xt = i}, H

(m)
i = T

N
(m)
i

,m ∈ N,

we get

H
(m)
i

m
→ Ei(Hi) = mi almost surely, as m→∞.

Example 74 (Empirical distributions) If (Yn)n≥1 is an infinite sample (independent and
identically distributed random variables) from a discrete distribution ν on S, then the random

variables B
(i)
n = 1{Yn=i}, n ≥ 1, are also independent and identically distributed for each fixed

i ∈ S, as functions of independent variables. The Strong Law of Large Numbers yields

ν
(n)
i =

#{k = 1, . . . , n : Yk = i}
n

=
B

(i)
1 + · · ·+B

(i)
n

n
→ E(B

(i)
1 ) = P(Y1 = i) = νi

almost surely, as n→∞. The probability function ν(n) is called empirical distribution. It lists
relative frequencies in the sample and, for a specific realisation, can serve as an approximation of
the true distribution. In applications of statistics, it is the sample distribution associated with a
population distribution. The result that empirical distributions converge to the true distribution,
is true uniformly in i and in higher generality, it is usually referred to as the Glivenko-Cantelli
theorem.

Remark 75 (Discrete ergodic theorem) If (Mn)n≥0 is a positive-recurrent (ν,Π)- Markov
chain, the Ergodic Theorem is a statement very similar to the example of empirical distributions

#{k = 0, . . . , n− 1 : Mk = i}
n

→ ηi almost surely, as n→∞,

for a stationary distribution η, but of course, the Mn, n ≥ 0, are not independent (in general),
and only identically distributed if ν = η. We need to work a bit harder to deduce the Ergodic
Theorem from the Strong Law of Large Numbers.
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Renewal processes and equations

Reading: Grimmett-Stirzaker 10.1-10.2; Ross 7.1-7.3

We introduce renewal processes (Xt, t ≥ 0) and study the asymptotic behaviour of Xt.

9.1 Motivation and definition

The Poisson process (and all continuous-time Markov chains) have exponentially distributed
holding times, which possess the lack of memory property. In practice, this assumption is often
not reasonable.

Example 76 Suppose that you count the changing of batteries for an electrical device. Given
that the battery has been in use for time t, is its residual lifetime distributed as its total lifetime?
We would assume this, if we were modelling with a Poisson process.

We may wish to replace the exponential distribution by other distributions, e.g. one that
cannot take arbitrarily large values or, for other applications, one that can produce clustering
effects (many short holding times separated by significantly longer ones). Here is the analogue
of a Poisson process when we drop the requirement for Exp(λ) inter-arrival distribution:

Definition 77 Let Zn, n ≥ 0, be independent identically distributed and positive random
variables. Let Tn = Z0 + · · ·+ Zn−1, n ≥ 1. Then the process X = (Xt, t ≥ 0) defined by

Xt = #{n ≥ 1 : Tn ≤ t}

is called a renewal process. The common distribution of Zn, n ≥ 0, is called the inter-arrival
distribution or the inter-renewal distribution.

Renewal processes also arise naturally in the study of continuous-time Markov chains.

Example 78 If (Yt)t≥0 is a continuous-time Markov chain with Y0 = i, then Zn = H
(n+1)
i −H(n)

i ,
the times between successive returns to i by Y , are independent and identically distributed (by
the strong Markov property). The associated counting process

Xt = #{n ≥ 1 : H
(n)
i ≤ t}, t ≥ 0,

counting the number of visits to i up to time t, t ≥ 0, is thus a renewal process.

9.2 The renewal function

Definition 79 The function m : [0,∞)→ [0,∞), m(t) := E(Xt), is called the renewal function.

For Zn ∼ Exp(λ) we have Xt ∼ Poi(λt) and m(t) = E(Xt) = λt. In general, the renewal function
is one of the central objects in renewal theory.

To calculate the renewal function for general renewal processes, we investigate the distribu-
tion of Xt. For any counting process (Xt, t ≥ 0), we have

Xt = k ⇐⇒ Tk ≤ t < Tk+1,

37
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so that we can express

P(Xt = k) = P(Tk ≤ t < Tk+1) = P(Tk ≤ t)− P(Tk+1 ≤ t)

in terms of the distributions of Tk = Z0 + · · ·+ Zk−1, k ≥ 1.
If Zi has a probability density function, we can express the density of Tk as a convolution

power. Specifically, recall that for two nonnegative independent continuous random variables Z
and T with densities f and g, the random variable Z + T has density

(f ∗ g)(u) =

∫ u

0
f(u− t)g(t)dt, u ≥ 0.

It is not hard to check that the convolution product is symmetric, associative and distributes
over sums of functions. While the first two of these properties follow from Z + T = T + Z
and (Z + T ) + V = Z + (T + V ) for associated random variables, the third property has
no such meaning, since sums of densities are no longer probability densities. However, the
definition of the convolution product makes sense for general nonnegative integrable functions
and distributivity follows straight from the definition. We can define convolution powers f∗(1) =
f and f∗(k+1) = f ∗ f∗(k), k ≥ 1. Then

P(Tk ≤ t) =

∫ t

0
fTk(s)ds =

∫ t

0
f∗(k)(s)ds,

if Zn, n ≥ 0, are continuously distributed with density f .

Proposition 80 Let X be a renewal process with inter-renewal density f . Then

m(t) =

∫ t

0

∞∑
k=1

f∗(k)(s)ds.

Proof: By Tonelli’s Theorem,∫ t

0

∞∑
k=1

f∗(k)(s)ds =

∞∑
k=1

∫ t

0
f∗(k)(s)ds =

∞∑
k=1

P(Tk ≤ t) =

∞∑
k=1

P(Xt ≥ k) = E(Xt) = m(t).

2

9.3 The renewal equation

For continuous-time Markov chains, conditioning on the first transition time was a powerful
tool. We can do this here and get what is called the renewal equation.

Proposition 81 Let X be a renewal process with inter-renewal density f . Then m(t) = E(Xt)
is the unique (locally bounded) solution of

m(t) = F (t) +

∫ t

0
m(t− s)f(s)ds, i.e. m = F + f ∗m,

where F (t) =
∫ t
0 f(s)ds = P(Z1 ≤ t).

Proof: Conditioning on the first arrival will involve the process X̃u := XT1+u, u ≥ 0. Note
that X̃0 = 1 and that (X̃u − 1, u ≥ 0) is a renewal process with inter-renewal times Z̃n = Zn+1,
n ≥ 0, independent of T1. Therefore

m(t) = E(Xt) =

∫ ∞
0

f(s)E(Xt|T1 = s)ds =

∫ t

0
f(s)E(X̃t−s)ds = F (t) +

∫ t

0
f(s)m(t− s)ds ,
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where in the last equality we used X̃t−s has the same distribution as 1 +Xt−s. For uniqueness,
suppose that also ` = F +f ∗`, then α = `−m is locally bounded and satisfies α = f ∗α = α∗f .
Iteration gives α = α ∗ f∗(k) for all k ≥ 1 and, summing over k gives for the right hand side
something finite:∣∣∣∣∣

( ∞∑
k=1

α ∗ f∗(k)
)

(t)

∣∣∣∣∣ =

∣∣∣∣∣
(
α ∗

∞∑
k=1

f∗(k)

)
(t)

∣∣∣∣∣ =
∣∣(α ∗m′) (t)

∣∣
=

∣∣∣∣∫ t

0
α(t− s)m′(s)ds

∣∣∣∣ ≤
(

sup
u∈[0,t]

|α(u)|

)
m(t) <∞

but the left-hand side is infinite unless α(t) = 0. Therefore `(t) = m(t), for all t ≥ 0. 2

Remark 82 We can write the solution of the renewal equation as m = F + F ∗
∑

k≥1 f
∗(k).

Indeed, we check that the right-hand side ` := F +F ∗
∑

k≥1 f
∗(k) satisfies the renewal equation:

F + f ∗ ` = F + F ∗ f + F ∗
∞∑
j=2

f∗(j) = F + F ∗
∞∑
k=1

f∗(k) = `,

just using properties of the convolution product. By the uniqueness part of Proposition 81, we
conclude that ` = m.

Unlike Poisson processes, general renewal processes do not have a linear renewal function,
but it will be asymptotically linear (Elementary Renewal Theorem, as we will see). In fact,
renewal functions are in one-to-one correspondence with inter-renewal distributions – we do not
prove this, but it should not be too surprising given that m = F +f ∗m is almost symmetric in f
and m, and is symmetric after differentiation (we omit the details), which gives m′ = f +f ∗m′.

9.4 Strong Law and Central Limit Theorem of renewal theory

Theorem 83 (Strong Law of renewal theory) Let X be a renewal process with mean inter-
renewal time µ = E(Z1) ∈ (0,∞). Then

Xt

t
→ 1

µ
almost surely, as t→∞.

Proof: Note that X is constant on [Tn, Tn+1) for all n ≥ 0, and therefore constant on
[TXt , TXt+1) 3 t. Therefore, for all t ≥ T1,

TXt

Xt
≤ t

Xt
<
TXt+1

Xt
=

TXt+1

Xt + 1

Xt + 1

Xt
.

Now P(Xt →∞) = 1, since X∞ ≤ n ⇐⇒ Tn+1 =∞ which is absurd, since Tn+1 = Z0+· · ·+Zn
is a finite sum of finite random variables. Therefore, we conclude from the Strong Law of Large
Numbers for Tn, that

TXt

Xt
→ µ almost surely, as t→∞.

Therefore, if Xt →∞ and Tn/n→ µ, then by the sandwich theorem

µ ≤ lim
t→∞

t

Xt
≤ µ ,

but this means P(Xt/t→ 1/µ) ≥ P(Xt →∞, Tn/n→ µ) = 1, as required. 2
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Of course, there is also a Weak Law of Renewal Theory, which now follows, because almost
sure convergence implies convergence in probability. A direct proof for convergence in probability
is more difficult, because ε-deviations of Xt/t are not quite the same as ε-deviations from TXt/Xt.

Theorem 84 (Central Limit Theorem of Renewal Theory) Let X be a renewal process
whose inter-renewal times Zn, n ≥ 0, have finite variance σ2 = Var(Z1) ∈ (0,∞) and µ = E(Z1).
Then Xt − t/µ√

tσ2/µ3
→ Normal(0, 1) in distribution, as t→∞.

A rough proof is not difficult, the details a little harder and left as Exercise A.5.3.

9.5 The elementary renewal theorem

Theorem 85 Let X be a renewal process with mean inter-renewal times µ and m(t) =E(Xt).
Then m(t)

t
=

E(Xt)

t
→ 1

µ
as t→∞

This does not follow from the Strong Law of Renewal Theory since almost sure convergence
does not imply convergence of means (cf. Proposition 65, see Exercise A.5.2(a)). The proof is
not examinable, but the statement of the following lemma is instructive:

Lemma 86 For a renewal process X with arrival times (Tn, n ≥ 1), we have

E(TXt+1) = µ(m(t) + 1), where m(t) = E(Xt) and µ = E(T1).

This may not be surprising, because TXt+1 is the sum of Xt + 1 inter-renewal times, each with
mean µ. Taking expectations, we may expect m(t) + 1 times µ. However, we have E(ZXt) >
E(Z1) even for X ∼ PP(λ), by the lack of memory property, so the lemma can only hold if
E(TXt) < µm(t).

Proof of Lemma 86: Let us do a one-step analysis on the quantity of interest g(t) = E(TXt+1):

g(t)=

∫ ∞
0

E(TXt+1|T1 =s)f(s)ds =

∫ t

0

(
s+ E(TXt−s+1)

)
f(s)ds+

∫ ∞
t

sf(s)ds = µ+ (g ∗ f)(t).

This is almost the renewal equation. In fact, g1(t) = g(t)/µ− 1 satisfies the renewal equation

g1(t) =
1

µ

∫ t

0

g(t− s)f(s)ds =

∫ t

0

(g1(t− s) + 1)f(s)ds = F (t) + (g1 ∗ f)(t),

and, by Proposition 81, g1(t) = m(t), i.e. g(t) = µ(1 +m(t)) as required. 2

Proof of Theorem 85: Clearly t < E(TXt+1) = µ(m(t) + 1) gives the lower bound lim inf
t→∞

m(t)

t
≥ 1

µ
. For

the upper bound we use a truncation argument and introduce the renewal process X̃ associated with

Z̃j = Zj ∧ a =

{
Zj if Zj < a,
a if Zj ≥ a,

j ≥ 0.

Then Z̃j ≤ Zj for all j ≥ 0 implies X̃t ≥ Xt for all t ≥ 0, hence m̃(t) ≥ m(t). By the lemma,

t ≥ E(T̃X̃t
) = E(T̃X̃t+1)− E(Z̃X̃t

) = µ̃(m̃(t) + 1)− E(Z̃X̃t
) ≥ µ̃(m(t) + 1)− a.

Therefore

m(t)

t
≤ 1

µ̃
+
a− µ̃
µ̃t

⇒ lim sup
t→∞

m(t)

t
≤ 1

µ̃
⇒ lim sup

t→∞

m(t)

t
≤ 1

µ
,

since µ̃ = E(Z̃1) = E(Z1 ∧ a)→ E(Z1) = µ a a→∞, by monotone convergence. 2

Note that truncation was necessary to get E(Z̃X̃t
) ≤ a. It would have been enough if we had

E(ZXt
) = E(Z1) = µ, but as noted above, this is not true. The method of truncation can also be used to

prove the Strong Law of Large Numbers without finite fourth moment, just assuming E(|Y1|) <∞.
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Excess life and stationarity

Reading: Grimmett-Stirzaker 10.3-10.4; Ross 7.7

So far, we have studied the asymptotic behaviour of one-dimensional distributions of a re-
newal process X, as t→∞:

Xt

t
→ 1

µ
almost surely,

E(Xt)

t
→ 1

µ
,

Xt − t/µ√
tσ2/µ3

→ Normal(0, 1) in distribution.

For Poisson processes we also studied finite-dimensional marginal distributions and joint distri-
butions of

Xt, Xt+s −Xt, . . . stationary, independent increments.

In this lecture, we study the increments of renewal processes.

10.1 The renewal property, age and excess life

To begin with, let us study the post-t process for a renewal process X, i.e. (Xt+s−Xt)s≥0. For
fixed t, this is not a renewal process as defined so far. We first consider renewal times Ti, i ≥ 0.

Proposition 87 Let X be a renewal process and Ti = inf{t ≥ 0 : Xt = i} the ith renewal time
for some i ≥ 1. Then (Xr)r≤Ti and X̃ = (XTi+s−XTi)s≥0 are independent and X̃ has the same
distribution as X.

Proof: The proof is the same as (actually easier than) the proof of the strong Markov property
of birth processes at birth times Ti, i ≥ 1, cf. Exercise A.2.8(b). Specifically, the inter-renewal
times Z̃n = Zi+n, n ≥ 0, are independent of Z0, . . . , Zi−1. Functions of independent random
variables are independent. Here, the pre-Ti-process (Xr)r≤Ti is a function of Z0, . . . , Zi−1, while

the post-Ti-process X̃ is constructed from Z̃n, n ≥ 0, just as X is constructed from Zn, n ≥ 0.
2

Here are two examples to see how this breaks down when Ti is replaced by a fixed time t > 0.

Example 88 If the inter-renewal times are constant, say P(Zn = 3) = 1, then X̃ = (Xt+s −
Xt)s≥0 has a first arrival time Z̃0 with P(Z̃0 = 3− t) = 1, for 0 ≤ t < 3.

The second example shows that also the independence of the pre-t and post-t processes fails.

Example 89 Let P(Zn = 1) = 0.7, P(Zn = 2) = 0.2 and P(Zn = 19) = 0.1 for all n ≥ 0. Then

µ = E(Zn) = 0.7× 1 + 0.2× 2 + 0.1× 19 = 3.

Consider a renewal process X with this inter-renewal distribution, and let t = 2. Denoting the
post-t process by X̃ = (Xt+s −Xt)s≥0, with inter-renewal times Z̃n, n ≥ 0, we have

• If X2 = 1 and X1 = 1 then Z0 = 1 and Z1 ≥ 2. Hence P(Z̃0 = 1|X2 = 1, X1 = 1) =
P(Z1 = 2|Z1 ≥ 2) = 0.2/0.3 = 2/3;

• If X2 = 1 and X1 = 0 then Z0 = 2. Hence P(Z̃0 = 1|X2 = 1, X1 = 0) = 0.7;

Therefore, Z̃0 is not conditionally independent of X1 given X2 = 1, so X̃ depends on (Xr)r≤2,

even conditionally given X2 =1. Similar calculations of P(Z̃0 =m0, . . . , Z̃k=mk|X2 =1, X1 = i),
however, do show that Z̃n, n ≥ 1, are independent of (Xr)r≤2 and of Z̃0.

41
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In the following it is useful to use vocabulary associated with a technical component (e.g. a
light bulb) that fails at the times of a renewal process X, and each time is replaced immediately
by a new component. The Zn, n ≥ 0, in the definition of the renewal process are then just the
lifetimes of independent identical components. Let us place the observations in Example 89 in a
general context. The age At = t−TXt of the component at time t ≥ 0, may contain information
about the excess lifetime (residual lifetime) Et = TXt+1− t of the component at time t, which is
the first renewal time Z̃0 of the post-t process X̃ = (Xt+s−Xt)s≥0. In particular, At and Et are
not independent, in general, and also the distribution of Et depends on t. Further components
Z̃n, n ≥ 1, are independent identical components.

This motivates the definition of “delayed” renewal processes, where the first renewal time
is different from the other inter-renewal times. In other words, the typical renewal behaviour
is delayed until the first renewal time. Our main application will be that Z0 is just part of an
inter-renewal time, but it will be useful to have a general definition:

Definition 90 Let Zn, n ≥ 1, be independent and identically distributed inter-renewal times
and Z0 independent with a possibly different distribution. Then the associated counting process

Xt = #{n ≥ 1: Z0 + · · ·+ Zn−1 ≤ t}, t ≥ 0,

is called a delayed renewal process. We refer to the distribution of Z0 as the delay distribution.
A renewal process, where Z0 has the same distribution as Zn, n ≥ 1, is called undelayed.

As a corollary to Proposition 87, we have:

Corollary 91 (Renewal property) Let X be a delayed renewal process, i ≥ 1, and Ti =
inf{t ≥ 0 : Xt = i} the ith renewal time. Then (Xr)r≤Ti and X̃ = (XTi+s − XTi)s≥0 are

independent and X̃ is an undelayed renewal process with the given inter-renewal distribution.

Just as the Markov property holds at more general stopping times, the renewal property also
holds at more general stopping times T , provided that P(T ∈ {Tn, n ≥ 0}) = 1. A key example
is TXt+1, the next renewal time after time t ≥ 0. As with the general strong Markov property,
we will not prove the general result, but we prove:

Corollary 92 Let X be a delayed renewal process and T = TXt+1 the next renewal time after
t ≥ 0. Then (Xr)r≤T and X̃ = (XT+s−XT )s≥0 are independent and X̃ is an undelayed renewal
process with the given inter-renewal distribution.

Proof: This proof is not examinable. On {Xt = `} = {Z0 + · · · +Z`−1 ≤ t < Z0 + · · · +Z`}, we

have Z̃n =Z`+1+n, n≥ 0, independent and identically distributed and independent of Z0, . . . , Z`, hence

conditionally independent of (Xr, r ≤ T ) given Xt = `. In particular, the conditional distribution of Z̃n,

n ≥ 0, given Xt = ` does not depend on `. By Exercise A.1.11, (Xr)r≤T is independent of Z̃n, n ≥ 0,

hence of X̃. 2

Proposition 93 Given a (possibly delayed) renewal process X, for every t ≥ 0, the post-t
process X̃ = (Xt+s −Xt)s≥0 is a delayed renewal process with Z̃0 = Et.

Proof: We apply the renewal property of Corollary 92 to the renewal time T = TXt+1, the first
renewal time after t. This establishes that Z̃n, n ≥ 1, are independent identically distributed
inter-renewal times, independent from the past, in particular from Z̃0 = TXt+1− t = Et. There-
fore, X̃ is a delayed renewal process. 2

Remark 94 Note that we make no further statement about the dependence of X̃ on the pre-t
process in Proposition 93. We have seen in Example 89 that independence fails, in general.
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10.2 Size-biased distributions and stationarity

In this section, we will show that for each inter-renewal distribution on (0,∞), there is a special
delay distribution of Z0 for which the delayed renewal process X with the given inter-renewal
distribution has stationary increments, i.e. such that the distribution of Xt+s−Xt is independent
of t ≥ 0, for each s ≥ 0.

Proposition 95 Let X be a delayed renewal process. Then the distribution of the excess lifetime
Et = TXt+1 − t does not depend on t ≥ 0 if and only if X has stationary increments.

Proof: By Proposition 93, the post-t process X̃ = (Xt+s−Xt)s≥0 is a delayed renewal process

with Z̃0 = Et. If the delay distribution of X̃ does not depend on t, then the distribution of X̃
does not depend on t. In particular, the distribution of X̃s = Xt+s−Xt does not depend on t.
Conversely, if X has stationary increments, P(Et ≤ s) = P(Xt+s −Xt ≥ 1) does not dependent
on t ≥ 0, for all s ≥ 0. Hence the distribution of Et does not depend on t ≥ 0. 2

It can be shown that E = (Et, t ≥ 0) is a Markov process on the uncountable state space
S = (0,∞), so X has stationary increments if and only if E is a stationary Markov process. We
will study an example of a discrete inter-renewal distribution, where the process (En, n ≥ 0) is a
discrete-time Markov chain in a countable state space S ⊆ N\{0}. This example will motivate the
definition of discrete size-biased distributions, which have natural analogues in continuous size-
biased distributions. We will use size-biased distributions to specify the (unique) special delay
distribution, which finally gives rise to a delayed renewal process with stationary increments, by
Proposition 95.

Example 96 In Example 89, consider En = TXn+1 − n ∈ N \ {0}, n ≥ 0. It is not hard to see
that (En, n ≥ 0) is a discrete-time Markov chain on {1, 2, . . . , 19} with transition probabilities

πi,i−1 = 1, i ≥ 2, π1,j = P(Z1 = j), j ∈ {1, 2, 19},

which is clearly irreducible and positive recurrent since E1(H1) = E(Z1) <∞, so it has a unique
stationary distribution. This stationary distribution can be calculated in a general setting of
N-valued inter-renewal times with finite mean, by solving ηΠ = η, see Exercise A.6.5.

Let us here present a heuristic argument to find η. The ergodic theorem for discrete-time
Markov chains establishes the stationary distribution as asymptotic proportions. Let us first
look at the simpler question of what proportion of times n ∈ N fall into inter-renewal times of
length 19. On average, 10 renewals give 7x1, 2x2 and 1x19 and cover 30 time units, of which

• 19 of the n ∈ {0, . . . , 29} fall into the 1 inter-renewal time of length 19, i.e. 19x1,

• 2 fall into each of the 2 inter-renewal times of length 2, i.e. 2x2,

• 1 falls into each of the 7 inter-renewal times of length 1, i.e. 1x7.

The proportions describe the size-biased distribution associated with the inter-renewal distribu-
tion, with probabilities 0.1, 0.2 and 0.7 weighted by the sizes 19, 2 and 1, respectively. At a
renewal, En jumps to a new inter-renewal time and then descends to 1, so that of the 30 steps,

• 1 step each is in state 19, . . . , 3,

• 1+2 steps are in state 2,

• 1+2+7 steps are in state 1.

The proportion in each state reflects the number of inter-renewal times greater than the state.
A random variable with a distribution according to these proportions can be thought of as a
uniformly distributed fraction of an inter-renewal time with the size-biased distribution.

Variations of the size-biasing effect appear under the names of inspection paradox and waiting
time paradox on Assignment Sheet 4.
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Definition 97 For a probability function p on N with µ =
∑

n≥0 npn ∈ (0,∞) we associate the
size-biased probability function

psbn =
npn
µ
, n ≥ 1.

With a probability density function f on (0,∞) with µ =
∫∞
0 tf(t)dt < ∞, we associate the

size-biased probability density function

f sb(z) =
zf(z)

µ
, z ∈ (0,∞).

We say that a random variable L with probability function psb, respectively with probability
density function f sb, has the (associated) size-biased distribution.

Example 98 Let p be a probability function to model the number of children in a random
family of a given population. Ask a random child “How many children are in your family”? The
answer has distribution psb, since a family with n children is n times more likely to be sampled.

Proposition 99 Let X be a delayed renewal process with any inter-renewal distribution, and
so that Z0 ∼ LU for a random variable L with the associated size-biased distribution and U ∼
Unif(0, 1) independent. Then X has stationary increments, and Et ∼ LU for all t ≥ 0.

Proof: A proof is in the optional Exercise A.6.6. 2

Example 100 For the inter-arrival distribution Exp(λ) of PP(λ), we have µ = 1/λ and get

f sb(z) =
zf(z)

µ
= λ2ze−λz, z ≥ 0,

the probability density function of a Gamma(2, λ) distribution, the distribution of the sum of two
independent Exp(λ) random variables. It was an exercise in Part A to show that LU ∼ Exp(λ).
This confirms that PP(λ) has stationary increments when Z0 ∼ Exp(λ).

In general, we can now calculate the distribution of a uniform proportion of a random variable
L with the size-biased distribution: in the continuous case, for independent U ∼ Unif(0, 1),

P(LU > y) =

∫ 1

0

∫ ∞
y/u

z

µ
f(z)dzdu =

∫ ∞
y

∫ 1

y/z
du
z

µ
f(z)dz =

1

µ

∫ ∞
y

(z − y)f(z)dz, y ∈ (0,∞),

and we just differentiate to get

f0(y) := − d

dy
P(LU > y) =

1

µ
yf(y) +

1

µ
F (y)− 1

µ
yf(y) =

1

µ
F (y), y ∈ (0,∞).

Example 96 is for N-valued inter-renewal times, where the renewal process (Xt, t ≥ 0) has integer
renewal times, so it made sense to consider the discretised processes (Xn, n ≥ 0) and (En, n ≥ 0).
For continuous inter-renewal distributions, we can still calculate the asymptotic proportion of
time that the excess life Es exceeds a threshold y ∈ (0,∞). Here is a rigorous calculation for an
undelayed renewal process X with mean inter-renewal time µ ∈ (0,∞):

1

Tk

∫ Tk

0
1{Es>y}ds =

k

Tk

1

k

k−1∑
j=0

(Zj − y)1{Zj>y}

allows the application of the Strong Law of Large Numbers twice, to independent and identically
distributed inter-renewal times Zj , j ≥ 0, with partial sums Tk = Z0 + · · · + Zk−1, k ≥ 1, and
to independent and identically distributed Yj = (Zj − y)1{Zj>y}, j ≥ 0, to obtain almost sure
convergence as k →∞ to

1

E(Z1)
E(Y1) =

1

µ

∫ ∞
y

(z − y)f(z)dz = P(LU > y).

If we had developed a theory of (0,∞)-valued Markov process including an ergodic theorem,
which applies to (Et, t ≥ 0), this calculation would identify the distribution of LU as a stationary
distribution of (Et, t ≥ 0), and would hence prove Proposition 99.
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Convergence to equilibrium –
renewal theorems

Reading: Grimmett-Stirzaker 10.4

For an irreducible positive recurrent Markov chain (Xt, t ≥ 0), there is a stationary distribu-
tion ξ. If X0 ∼ ξ, then Xt ∼ X0 ∼ ξ for all t ≥ 0. Furthermore, Xt converges to this stationary
distribution as t→∞, when X0 ∼ ν for any initial distribution ν.

For any inter-renewal distribution with finite mean, there is a delay distribution for which the
renewal process (Xt, t ≥ 0) has stationary increments. With this delay distribution Xt+s−Xt ∼
Xs for all t ≥ 0. We will see today that Xt+s − Xt converges to this stationary increment
distribution as t→∞, for any delay distribution.

For discrete-time Markov chains, the convergence theorem assumes aperiodicity. We will
discuss a similar condition for lattice-valued inter-renewal times.

11.1 Convergence to equilibrium

Theorems in this section and the next are stated separately for two cases. These are essentially
for discrete and continuous inter-renewal distributions, respectively. More precisely, we will
distinguish lattice-valued and non-lattice-valued distributions. The standard terminology in
this context is “arithmetic” and “non-arithmetic”.

Definition 101 A positive random variable Z (and its distribution) is called non-arithmetic if

{r > 0 : P(Z ∈ rN) = 1} = ∅.

Otherwise, it is called arithmetic, and d-arithmetic, if d = sup{r > 0 : P(Z ∈ rN) = 1}.

Example 102 • All continuous random variables are non-arithmetic.

• All integer-valued random variables Z are arithmetic, and 1-arithmetic if furthermore
P(Z ∈ kN) < 1 for all k ≥ 2.

• Let B ∼ Binomial(1, p). Then X = 1 + B is 1-arithmetic and Y =
√

2(1 + B) is
√

2-
arithmetic. Z = 1 + aB is non-arithmetic if and only if a ≥ 0 is irrational. If a = p/q is
rational, then Z is 1/q-arithmetic, provided that p, q ∈ N, q ≥ 1, with gcd(p, q) = 1.

We will apply this concept to inter-renewal times. We will formulate results for non-arithmetic
and 1-arithmetic inter-renewal times. These are the two most relevant cases. The 1-arithmetic
case can be easily generalised to d-arithmetic inter-renewal times.

In the sequel we will use the following notation. Let X be a renewal process, which may
have any delay distribution (or X may be undelayed). We will assume that its inter-renewal
times have finite mean µ = E(Z1). Let L be a size-biased inter-renewal time, i.e. L has the size-
biased distribution associated with the inter-renewal distribution of Z1, and let U ∼ Unif(0, 1)
be independent. We saw in Proposition 99 that Z̃0 = LU is such that a renewal process X̃
with delay LU has stationary increments. While this holds for non-arithmetic and arithmetic

45
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inter-renewal times, this process only features in the following convergence theorems in the
non-arithmetic case.

In the 1-arithmetic case with probability function pn, n ≥ 1, we will meet a discretised
version Ẑ0 of Z̃0, which is uniformly distributed on {1, . . . , L}. More precisely,

P(Ẑ0 = k) =
∞∑
`=k

P(L = `)
1

`
=
∞∑
`=k

`p`
µ

1

`
=

1

µ
P(Z1 ≥ k), k ≥ 1. (1)

It is easy to see that a renewal process X̂ = (X̂t, t ≥ 0) with delay Ẑ0 has stationary increments
Xn+s −Xn, n ≥ 0, for all s > 0.

Recall definitions At = t−TXt and Et = TXt+1−t for the age and excess life of the component
in use at time t ≥ 0. We obtain convergence for increments, ages and excess lives:

Theorem 103 (Convergence in distribution) Let X be a (possibly delayed) renewal process
and assume that the inter-renewal times have finite mean µ.

(a) If the inter-renewal distribution is non-arithmetic, then

Xt+s −Xt → X̃s in distribution, as t→∞,

where X̃ is an associated stationary renewal process.

Also (At, Et)→ (L(1− U), LU) in distribution, as t→∞, where L is a size-biased inter-
renewal time, and U ∼ Unif(0, 1) is independent of L.

(b) If the inter-renewal distribution is 1-arithmetic, then

Xn+s −Xn → X̂s in distribution, as n→∞.

where X̂ is an associated delayed renewal process with Ẑ0 as in (1). Also, (An, En) →
(L− Ẑ0, Ẑ0) in distribution, as n→∞.

We will give a sketch of the coupling proof for the arithmetic case below.

11.2 Renewal theorems

The renewal theorems are analogues of Theorem 103 for the convergence of certain moments.
The renewal theorem itself concerns means. It is a refinement of the Elementary Renewal
Theorem to increments.

Theorem 104 (Renewal theorem) Let X be a (possibly delayed) renewal process having
inter-renewal times with finite mean µ and renewal function m(t) = E(Xt).

(a) If the inter-renewal times are non-arithmetic, then for all h ≥ 0

m(t+ h)−m(t)→ h

µ
as t→∞.

(b) If the inter-renewal times are 1-arithmetic, then for all h ∈ N

m(t+ h)−m(t)→ h

µ
as t→∞.

As a generalisation that is often useful in applications, there is the key renewal theorem:
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Theorem 105 (Key renewal theorem) Let X be a renewal process with continuous inter-
renewal distribution and m(t) = E(Xt). If g : [0,∞)→ [0,∞) is Riemann integrable, then

(g ∗m′)(t) =

∫ t

0
g(t− x)m′(x)dx→ 1

µ

∫ ∞
0

g(x)dx as t→∞.

The integrability condition on g is somewhat delicate (direct Riemann integrability on [0,∞)
is the precise technical term that many authors use), but we skip the details. The restrictions
on the inter-renewal distribution can also be relaxed (at the cost of some limits through discrete
lattices in the d-arithmetic case), but the convolution with m′ needs to be rephrased, essen-
tially by replacing m′(x)dx by an integral with respect to the Stieltjes measure associated with
m. Even the case µ = ∞ can be shown to correspond to zero limits. We will not use such
generalisations.

Example 106 If we take g(x) = gh(x) = 1[0,h](x) in the Key renewal theorem, we get∫ t

0
g(t− x)m′(x)dx =

∫ t

t−h
m′(x)dx = m(t)−m(t− h)

and this allows to deduce the renewal theorem from the Key renewal theorem.

The renewal theorem and the key renewal theorem should be thought of as results where
time windows [t − h, t] or [t, t + h] are sent to infinity, and a stationary picture is obtained in
the limit. In the case of the renewal theorem, we are only looking at the mean of an increment.
In the key renewal theorem, we can consider other quantities related to the mean behaviour in
a window. We will see that moments of excess lifetimes fall into this category. Note e.g. that
{Et ≤ h} is a quantity only depending on X in the time window [t, t+ h].

The key renewal theorem can be deduced from the renewal theorem by approximating g by
step functions.

11.3 The coupling proofs

This section is not examinable. Suppose that X is a renewal process with integer-valued inter-renewal
times, and suppose that P(Z1 ∈ dN) < 1 for all d ≥ 2, i.e. suppose that Z1 is 1-arithmetic. Let X̂ be a

renewal process with delay as in (1). It will be useful to discretise X̂ to integer times: (X̂n, n ≥ 0) has
stationary increments.

Suppose that X and X̂ are independent. Define N = inf{n ≥ 1 : Tn = T̂n} the index of the first
simultaneous renewal (same index for both, to simplify the argument). A third process is constructed

Xt =

{
Xt if t < TN ,

X̂t if t ≥ TN ,
with Zj =

{
Zj if j < N ,

Ẑj if j ≥ N .

The following three steps complete the essence of the proofs:

1. P(N < ∞) = 1 – this is because N is the first time that the random walk Sn = Tn − T̂n hits 0.
While S is not a simple random walk, it can be shown that it is recurrent (hence hits 0 in finite

time) since E(Z1 − Ẑ1) = 0.

2. X is a renewal process with the same distribution as X.

3. supB

∣∣∣P((Xn+s −Xn)s≥0 ∈ B)− P(X̂ ∈ B)
∣∣∣ ≤ P(TN > n) → 0, as n → ∞, where the supremum

is over all (suitably measurable) B ⊂ {f : [0,∞)→ N}.

This shows convergence of the distribution of (Xt+s −Xt)s≥0 to the distribution of X̂ in total variation,
which is stronger than convergence in distribution. In particular, for Bs,k = {f : [0,∞)→ N : f(s) = k}
we have {Xn+s −Xn = k} = {(Xn+u −Xn)u≥0 ∈ Bs,k} and conclude the proof of Theorem 103(b), as
far as convergence in distribution of increments are concerned.



Lecture 11: Convergence to equilibrium – renewal theorems 48

For the convergence of excess lives, we note that {Et ≤ r} = {Xt+r−Xt ≥ 1}, while joint distributions
with ages can be obtained {At ≤ a,Et ≤ r} = {Xt −Xt−a ≥ 1, Xt+r −Xt ≥ 1} using two consecutive
increments of (Xt−a+u −Xt−a)u≥0.

For the Renewal Theorem, Theorem 104(b), another argument, beyond the convergence in 3., is
needed to see that the means of Xt+s −Xt converge as t→∞.

For the non-arithmetic case, the proof is harder, since N = ∞ for N as defined above, and times
Nε = inf{n ≥ 1 : |Tn − T̂n| < ε} do not achieve a perfect coupling.

There is also an alternative proof using renewal equations.

11.4 Example

Let us investigate the asymptotics of E(Ert ), as t → ∞. We condition on the last renewal time
before t, distinguishing the events that this is the kth renewal time with density f∗(k), k ≥ 1.
Since in the kth case, we have Et = Tk+1 − t = Zk − (t− Tk), we get

E(Ert ) = E

(
Ert

∞∑
k=0

1{Xt=k}

)

= E(((Z0 − t)+)r) +
∑
k≥1

∫ t

0
E(((Zk − (t− x))+)r)f∗(k)(x)dx

= E(((Z0 − t)+)r) +

∫ t

0
E(((Z1 − (t− x))+)r)m′(x)dx.

The first term tends to 0 as t → ∞. For the second term, let us write g(y) = E(((Z1 − y)+)r).
This is a clearly a nonnegative Riemann-integrable function of y if E(Zr+1

1 ) < ∞ (see below).
The Key Renewal Theorem gives

E(Ert ) = E(((Z0 − t)+)r) + (g ∗m′)(t)→ 1

µ

∫ ∞
0

g(y)dy, as t→∞.

We can now calculate

1

µ

∫ ∞
0

g(y)dy =
1

µ

∫ ∞
0

E(((Z1 − x)+)r)dx

=
1

µ

∫ ∞
0

∫ ∞
x

(z − x)rf(z)dzdx

=
1

µ

∫ ∞
0

∫ ∞
0

yrf(y + x)dydx

=
1

µ

∫ ∞
0

yr
∫ ∞
0

f(y + x)dxdy

=
1

µ

∫ ∞
0

yrF (y)dy

=
E(Zr+1

1 )

(r + 1)µ
,

where the last step is by integration by parts. It is now easy to check that, in fact, these are the
moments of the limit distribution LU for the excess life Et.
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Ruin theory

Reading: Ross 7.10; CT4 Unit 6
Further reading: Norris 5.3

The last four lectures will be on applications. We will apply the general theory developed for
Markov chains and renewal processes to more specific processes that arise in certain applications.
This will go a bit beyond the scale of the examples that have complemented the theory so far.

12.1 The insurance ruin model

Insurance companies deal with large numbers of insurance policies at risk. They are grouped
according to type and various other factors into so-called portfolios. Let us focus on such a
portfolio and model the associated claim processes, the claim sizes and the reserve process. We
make the following assumptions.

• Claims arrive according to a Poisson process X = (Xt, t ≥ 0) with rate λ > 0.

• Claim amounts Aj , j ≥ 1, are positive, independent identically distributed, independent
of X, with probability density function k(a), a > 0, and finite mean µ = E(A1) <∞.

• The insurance company provides an initial reserve of x ≥ 0 money units.

• Premiums are paid continuously at constant rate c generating a linear premium income
accumulating to ct at time t.

• Premiums are added to the reserve, while claim amounts are deducted. We mostly assume
c > λµ to have more premium income than claim outgo, on average.

• We ignore all expenses and other influences.

In this setting, we define the following objects of interest:

• the aggregate claims process C = (Ct, t ≥ 0), where Ct =

Xt∑
n=1

An, t ≥ 0;

• the reserve process R = (Rt, t ≥ 0), where Rt = x+ ct− Ct, t ≥ 0;

• the time Truin = inf{t ≥ 0: Rt < 0} of technical ruin;

• the probability ψ(x) = Px(Truin <∞), as a function of R0 = x ≥ 0.

12.2 Aggregate claims and reserve processes

Proposition 107 The processes C and R have stationary independent increments. Their mo-
ment generating functions are given by

E(eγCt) = exp
(
λt
(
E(eγA1 − 1)

))
= exp

(
λt

∫ ∞
0

(eγa − 1)k(a)da

)
and

E(eβRt) = exp
(
βx+ βct− λt

(
1− E(e−βA1)

))
= exp

(
βx+ βct− λt

∫ ∞
0

(1− e−βa)k(a)da

)
.
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Proof: We first calculate the moment generating function of Ct by conditioning on Xt:

E(eγCt) = E

exp

γ Xt∑
j=1

Aj


=

∞∑
n=0

E

exp

γ n∑
j=1

Aj

P(Xt = n)

=

∞∑
n=0

(
E
(
eγA1

))n P(Xt = n)

= exp
(
λt
(
E
(
eγA1

)
− 1
))
,

which in the case where A1 has a density k, also gives the second formula required. The same
calculation for the joint moment generating function E(e−γCt−δ(Ct+s−Ct)) of Ct and Ct+s − Ct,
conditioning on Xt and on Xt+s−Xt, and similarly for more increments, yields stationarity and
independence of increments (only using the stationarity and independence of increments of X,
and the independence of the Aj , j ≥ 1).

The statements for R follow easily since Rt = x+ ct− Ct, t ≥ 0, setting γ = −β. 2

We can use the moment generating function to calculate moments and the stationary inde-
pendent increments give us independent identically distributed random variables to which the
Strong Law of Large Numbers applies:

Example 108 We differentiate the moment generating functions at zero to obtain

E(Ct) =
∂

∂γ
exp

{
λt
(
E
(
eγA1

)
− 1
)}∣∣∣∣

γ=0

= λt
∂

∂γ
E
(
eγA1

)∣∣∣∣
γ=0

= λtµ.

and E(Rt) = x+ct−λtµ = x+(c−λµ)t. Now the Strong Law of Large Numbers can be applied
to the independent and identically distributed increments Zj = Rj −Rj−1, j ≥ 1 to give

Rn
n

=
x

n
+

1

n

n∑
j=1

Zj → E(Z1) = c− λµ > 0 a.s., as n→∞.

This confirms that c > λµ means that, in a long-term average, there is more premium income
than claim outgo. In particular, this implies that Rn → ∞ a.s. as n → ∞. As in Example 72
(Strong Law for Poisson processes), this does not directly imply that Rt/t → c − λµ a.s. nor
that Rt → ∞ a.s. as t → ∞. It is conceivable that between integers, the reserve process takes
larger and larger negative values. But this does not actually happen, and we will show that
Rt →∞ a.s. as t→∞.

There are other random walks that are also embedded in the reserve process, and we shall
now use one of these to get a first asymptotic result about ruin probabilities:

Example 109 Consider the process at claim times Wn = RTn , n ≥ 0, where Tn, n ≥ 1, are the
arrival times of the Poisson process X, and T0 = 0. Now

Wj −Wj−1 = RTj −RTj−1 = c(Tj − Tj−1)−Aj , j ≥ 1,

are also independent identically distributed increments with E(Wj −Wj−1) = c/λ− µ, and the
Strong Law of Large Numbers yields

Wn

n
=
x

n
+

1

n

n∑
j=1

(Wj −Wj−1)→ c/λ− µ a.s. as n→∞.
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Again, we conclude Wn →∞, provided that c > λµ, but note that Wn are the local minima of
R, and indeed

TXt+1 > t ≥ TXt ⇒ Rt ≥ RTXt
= WXt →∞ a.s. as t→∞ since Xt →∞.

But Rt →∞ implies that R0
t := ct− Ct = Rt − x→∞ a.s., and so

I∞ := inf{R0
t : 0 ≤ t <∞} > −∞ a.s..

As a consequence, c > λµ yields

ψ(∞) := lim
x→∞

ψ(x) = lim
x→∞

Px(Rt < 0 for some t ≥ 0)

= lim
x→∞

P(R0
t < −x for some t ≥ 0) = lim

x→∞
P(I∞ < −x) = 0.

In other words, for any ε > 0, there is an initial capital x > 0, for which the ruin probability
ψ(x) is at most ε.

12.3 Ruin probabilities

We now turn to studying the ruin probabilities ψ(x) for finite x, as a function of x ≥ 0.

Proposition 110 Let c > λµ. Then the ruin probabilities ψ(x) satisfy the renewal-type equation

ψ = g + ψ ∗ f, i.e. ψ(x) = g(x) +

∫ x

0
ψ(x− y)f(y)dy, x ≥ 0,

where

f(y) =
λ

c
K(y) =

λ

c

∫ ∞
y

k(x)dx and g(x) =
λµ

c
K0(x) =

λ

c

∫ ∞
x

K(y)dy.

using notation K and K0 associated with k in analogy with tail integrals F and F 0 associated
with f and f0 at the end of Lecture 11.

Proof: We first note that the functions f and g satisfy

f ′(y) = −λ
c
k(y), f(0) =

λ

c
, g′(x) = −f(x).

We condition on T1 ∼ Exp(λ) and on A1, which has probability density function k, to obtain

ψ(x) =

∫ ∞
0

∫ ∞
0

ψ(x+ ct− a)k(a)daλe−λtdt =

∫ ∞
x

λ

c
e−(s−x)λ/c

∫ ∞
0

ψ(s− a)k(a)dads

since (RT1+s, s ≥ 0) is a reserve process starting from x+ cT1−A1 evolving independently of T1
and A1, if R0 = x, and where we use the convention that ψ(x) = 1 for x < 0.

We multiply by e−λx/c, differentiate with respect to x and cancel e−λx/c to find

ψ′(x) =
λ

c
ψ(x)− λ

c

∫ ∞
0

ψ(x− a)k(a)da =
λ

c
ψ(x)− λ

c

∫ x

0
ψ(x− a)k(a)da− λ

c
K(x).

We use notation f and g to write this as

ψ′(x) = g′(x) + ψ(x)f(0) +

∫ x

0
ψ(a)f ′(x− a)da,

where the last two terms are the derivative of (ψ ∗ f)(x). Integration yields ψ = g + ψ ∗ f + b
for some b ∈ R. Finally, we have ψ(∞) = 0, so we investigate x→∞ in

g(x) + (ψ ∗ f)(x) =
λ

c

∫ ∞
x

K(y)dy +

∫ x

0
ψ(x− y)f(y)dy → 0,

using µ =
∫∞
0 K(y)dy <∞ and dominated convergence, so that b = 0, as required. 2



Lecture 12: Ruin theory 52

Example 111 In the setting of the proposition, we can calculate ψ(0) = g(0) = λµ/c. In
particular, there is positive probability to avoid ruin when starting from zero initial reserve. In
other words, x 7→ ψ(x) jumps at x = 0 from ψ(0−) = 1 to ψ(0) = ψ(0+) = λµ/c < 1.

Corollary 112 If c > λµ, then ψ is given by

ψ = g + g ∗m′ where m′(y) =
∞∑
n=1

f∗(n)(y).

Proof: This is an application of Exercise A.6.4(a)-(b), the general solution of renewal equations.
Note that f is not a probability density for λµ < c, but the results (and arguments) are valid
for nonnegative f with

∫∞
0 f(y)dy ≤ 1. 2



Lecture 13

Asymptotics of ruin probabilities
and queueing models

In this lecture, we will use the Key Renewal Theorem to study the asymptotic behaviour of ruin
probabilities. We will also begin the second area of applications by studying departure times in
queueing models.

13.1 Asymptotic behaviour of ruin probabilities

In Proposition 110, we showed that ruin probabilities satisfy a renewal-type equation. However,
we did not identify a corresponding renewal process. Indeed, the framework was such that the
function f taking the role of the inter-renewal density does not integrate to 1, but to µλ/c < 1.
In fact, we can associate a defective renewal process that only counts a geometrically distributed
number of renewals. Each time there is probability 1−µλ/c that there are no further renewals.

Let us look at the reserve process R0
t = ct−Ct in the case c = λµ. The process R0 is defined

in terms of a Poisson process X (or indeed its independent inter-arrival times Zn ∼ Exp(λ),
n ≥ 0) and independent and identically distributed claim amounts An, n ≥ 1. In this setting,
f(y) = 1

µP(A1 > y), y > 0, is a probability density function. Consider J0 := 0 and the times of

new minima of R0

Jm := inf{t ≥ Jm−1 : R0
t < R0

Jm−1
}, m ≥ 1.

Lemma 113 For each m ≥ 1, the post-Jm process R̃0 = (R0
Jm+s − R0

Jm
, s ≥ 0) is independent

of (R0
t , 0 ≤ t ≤ RJm) and has the same distribution as R0.

Proof: This proof is not examinable. We argue as in the proof of Corollary 92 that the inter-arrival
times and here also associated claim sizes of R̃0, are conditionally independent from (R0

t , 0 ≤ t ≤ RJm)

given XJm = `, and indeed the conditional distribution of R̃0 is the distribution of R0 and does not
depend on ` ≥ 0. By Exercise A.1.11, independence and unconditional distribution follow. 2

As a consequence, the process

Ns = #{m ≥ 1: −RJm ≤ s}, s ≥ 0,

that is counting new minima up to depth s is a renewal process, with inter-renewal times
RJm − RJm+1 , m ≥ 0. Each inter-renewal time is a partial claim size, since the reserve process
attains new minima by jumping from above the old minimum to any new minimum. In fact, it
turns out to be a uniform proportion LU of a size-biased claim size L, where U ∼ Unif((0, 1)).
Intuitively, this is, because big claims are more likely to exceed the previous minimal reserve
level, hence size-biased L, but the previous level will only be exceeded by a fraction LU , since
R will not be at its minimum when the claim arrives. By calculations at the end of Lecture 12,
LU has indeed probability density function 1

µ

∫∞
x k(a)da, which is the f(x) of Proposition 110,

when considering c = λµ instead of c > λµ. We will not prove that new minima indeed exceed
old minima by a random amount distributed as LU , but turn to the case c > λµ now.

When c > λµ, there will only be a finite number of claims that exceed the previous minimal
reserve level since now R0

t → ∞ a.s., and Ns remains constant for depths s exceeding −I∞,
where I∞ = inf{R0

t , t ≥ 0} is the global minimum of R0.
To conclude, we specify the precise tail behaviour of ψ(x) as x→∞.

53
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Proposition 114 Assume that c > λµ and that there is α > 0 such that

1 =

∫ ∞
0

eαyf(y)dy and C :=

∫ ∞
0

eαyg(y)dy <∞.

in the notation of Proposition 110. Then

ψ(x) ∼ Ce−αx as x→∞.

Proof: Define a probability density function f̂(y) = eαyf(y), and ĝ(y) = eαyg(y) and ψ̂(x) =
eαxψ(x). Then ψ̂(x) satisfies

ψ̂(x) = ĝ(x) +

∫ x

0
ψ̂(x− y)f̂(y)dy.

The solution (obtained as in Corollary 112) converges by the key renewal theorem:

ψ̂(x) = ĝ(x) + (ĝ ∗ m̂′)(x)→ 1

µ̂

∫ ∞
0

ĝ(y)dy = C as x→∞, where m̂′(x) =
∑
n≥1

f̂∗(n)(x).

Note that we assume that ĝ is integrable. [The technical conditions for direct Riemann integrability

are easy to check since ĝ(x) is a product of eαx and the decreasing function g(x) =
∫∞
x
f(y)dy, x > 0.] 2

Example 115 If An ∼ Exp(1/µ), then in the notation of Proposition 110

g(x) =
λµ

c
e−x/µ and f(y) =

λ

c
e−y/µ

so that the renewal equation becomes

ex/µψ(x) =
λµ

c
+
λ

c

∫ x

0
ψ(y)ey/µdy.

In particular ψ(0) = λµ/c. After differentiation and cancellation

ψ′(x) =

(
λ

c
− 1

µ

)
ψ(x) ⇒ ψ(x) =

λµ

c
exp

{
−c− λµ

cµ
x

}
.

13.2 Some simple finite-state-space models

Example 116 (Sickness-death) In health insurance, the following model arises. Let S =
{H,S,∆} consist of the states healthy, sick and dead. Clearly, ∆ is absorbing. All other
transitions are possible, at different rates. Under the assumption of full recovery after sickness,
the state of health of the insured can be modelled by a continuous-time Markov chain.

Example 117 (Multiple decrement model) A life assurance often pays benefits not only
upon death but also when a critical illness or certain losses of limbs, sensory losses or other
disability are suffered. The assurance is not usually terminated upon such an event.

Example 118 (Marital status) Marital status has a non-negligible effect for various insur-
ance types. The state space is S = {B,M,D,W,∆} to model bachelor, married, divorced,
widowed, dead. Not all direct transitions are possible.

Example 119 (No claims discount) In car insurance and some other types of general insur-
ances, you get a discount on your premium depending on the number of years without (or at
most one) claim. This gives rise to a whole range of models, e.g. S = {0%, 20%, 40%, 50%, 60%}.

In all these examples, the exponential holding times are not particularly realistic. There
are usually costs associated either with the transitions or with the states. Also, estimation of
transition rates is of importance. A lot of data are available and sophisticated methods have
been developed.
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13.3 Summary results for M/M/1 queues

Consider a single-server queueing system in which customers arrive according to a Poisson
process of rate λ and service times are independent Exp(µ). Let Xt denote the length of the
queue at time t including any customer that is currently served. This is the setting of Exercise
A.4.3 and A.4.4 and from there we recall the following results:

• An invariant distribution exists if and only if λ < µ, and is given by

ξn = (λ/µ)n(1− λ/µ) = ρn(1− ρ), n ≥ 0.

where ρ = λ/µ is called the traffic intensity. Cleary λ < µ ⇐⇒ ρ < 1. By the ergodic
theorem, the server is busy a (long-term) proportion ρ of the time.

• The embedded “jump chain” (Mn)n≥0, Mn = XTn , has a different invariant distribution
η 6= ξ. In fact, ξ puts more weight into the state 0 than η.

• During any Exp(µ) service time, a geom(λ/(λ+ µ)) number of customers arrives.

13.4 M/M/1 queues and the departure process

Define D0 = 0 and successive departure times

Dn+1 = inf{t > Dn : Xt −Xt− = −1} n ≥ 0.

Let us study the process Vn = XDn , n ≥ 0, i.e. the process of queue lengths after departures. By
the lack of memory property of Exp(λ), the geometric random variables Nn, n ≥ 1, that record
the number of new customers between Dn−1 and Dn, are independent. Therefore, (Vn)n≥0 is a
Markov chain, with transition probabilities

dk,k−1+m =

(
λ

λ+ µ

)m µ

λ+ µ
, k ≥ 1,m ≥ 0.

For k = 0, we get d0,m = d1,m, m ≥ 0, since the next service only begins when a new customer
enters the system.

Proposition 120 The invariant distribution of the discrete-time Markov chain V is ξ.

Proof: A simple calculation shows that with ρ = λ/µ and q = λ/(λ+ µ)

∑
k∈N

ξkdk,n = ξ0d0,n +

n+1∑
k=1

ξkdk,n = (1− ρ)qn(1− q) + (1− ρ)(1− q)qn+1
n+1∑
k=1

(
ρ

q

)k
= ξn,

after bringing the partial geometric progression into closed form and carrying out appropriate
cancellations. 2

Note that the conditional distribution of Dn+1 − Dn given Vn = k is the distribution of a
typical service time G ∼ Exp(µ) if k ≥ 1, but the distribution of Y +G, where Y ∼ Exp(λ) is a
typical inter-arrival time, if k = 0, since we have to wait for a new customer and his service. We
can also calculate the unconditional distribution of Dn+1 −Dn, at least if V is in equilibrium.

Proposition 121 If X (and hence V ) is in equilibrium, then the Dn+1 −Dn are independent
Exp(λ) distributed.



Lecture 13: Asymptotics of ruin probabilities and queueing models 56

Proof: Let us first study D1. We can calculate its moment generating function by Proposition
135 a), conditioning on V0, which has the stationary distribution ξ:

E(eγD1) = E(eγD1 |V0 = 0)P(V0 = 0) +
∞∑
k=1

E(eγD1 |V0 = k)P(V0 = k)

=
λ

λ− γ
µ

µ− γ

(
1− λ

µ

)
+

µ

µ− γ
λ

µ

=
λ

µ− γ
µ− λ+ λ− γ

λ− γ
=

λ

λ− γ

and identify the Exp(λ) distribution.
For independence of V1 and D1 we have to extend the above calculation and check that

E(eγD1αV1) =
λ

λ− γ
µ− λ
µ− αλ

,

because the second ratio is the probability generating function of the geom(λ/µ) stationary
distribution ξ. To do this, condition on V0 ∼ ξ and then on D1:

E(eγD1αV1) =

∞∑
k=0

ξkE(eγD1αV1 |V0 = k)

and use the fact that given V1 = k ≥ 1, V1 = k + N1 − 1, where N1 ∼ Poi(λx) conditionally
given D1 = x, because N1 is counting Poisson arrivals in an interval of length D1 = x:

E(eγD1αV1 |V0 = k) = αk−1
∫ ∞
0

E(eγD1αN1 |V0 = k,D1 = x)fD1(x)dx

= αk−1
∫ ∞
0

eγx exp{−λx(1− α)}fD1(x)dx

= αk−1E(e(γ−λ(1−α)D1)) = αk−1
µ

µ− γ + λ(1− α)
.

For k = 0, we get the same expression without αk−1 and with a factor λ/(λ − γ), because
D1 = Y + G, where no arrivals occur during Y , and N1 is counting those during G ∼ Exp(µ).
Putting things together, we get

E(eγD1αV1) = (1− ρ)

(
λ

λ− γ
+

ρ

1− ρα

)
µ

µ− γ + λ(1− α)
,

which simplifies to the expression claimed.
Now an induction shows Dn+1−Dn ∼ Exp(λ), and they are independent, because the strong

Markov property at Dn makes the system start afresh conditionally independently of the past
given Vn. Since D1, . . . , Dn − Dn−1 are independent of Vn, they are then also independent of
the whole post-Dn process. 2

The argument is very subtle, because the post-Dn process is actually not independent of
the whole pre-Dn process, just of the departure times. The result, however, is not surprising
since we know that X is reversible, and the departure times of X are the arrival times of the
time-reversed process, which form a Poisson process of rate λ.

In the same way, we can study A0 = 0 and successive arrival times

An+1 = inf{t > An : Xt −Xt− = 1}, n ≥ 0.

Clearly, these also have Exp(λ) increments, since the arrival process is a Poisson process with
rate λ. We study XAt in the next lecture in a more general setting.



Lecture 14

M/G/1 and G/M/1 queues

Reading: Norris 5.2.7-5.2.8; Grimmett-Stirzaker 11.1; 11.3-11.4; Ross 8.5, 8.7
Further reading: Grimmett-Stirzaker 11.5-11.6

The M/M/1 queue is the simplest queueing model. We have seen modifications with more
than 1 server. These were all continuous-time Markov chains. It was always the exponential dis-
tribution that described inter-arrival times as well as service times. In practice, this assumption
is often unrealistic. If we keep exponential distributions for either inter-arrival times or service
times, but allow more general distributions for the other, the model can still be handled using
Markov techniques that we have developed.

We call an M/G/1 queue a queue length process with Markovian arrivals (Poisson process
of rate λ), a General service time distribution (we also use G for a random variable with this
general distribution on (0,∞)), and 1 server.

We call a G/M/1 queue a queue length process with a General inter-arrival distribution and
Markovian service times (exponential with rate parameter µ), and 1 server.

There are other queues that have names in this formalism. We have seen M/M/s queues
(Example 32) and M/M/∞ queues (Example 62).

14.1 Stationarity in M/G/1 queues

An M/G/1 queue has independent and identically distributed service times with any distribu-
tions on (0,∞), but independent Exp(λ) inter-arrival times. Let Xt be the queue length at time
t. X is not a continuous-time Markov chain, since the service distribution does not have the
lack of memory property (unless it is exponential which brings us back to M/M/1). This means
that after an arrival, we have a residual service distribution that is not just the distribution of a
full service. However, after departures, we have exponential residual inter-arrival distributions:

Proposition 122 The process of queue lengths Vn = XDn at successive departure times Dn,
n ≥ 0, is a Markov chain with transition probabilities

dk,k−1+m = E
(

(λG)m

m!
e−λG

)
, k ≥ 1,m ≥ 0,

and d0,m = d1,m, m ≥ 0. Here G is a (generic) service time.

Proof: The proof is not hard since we recognise the ingredients. Given G = t the number N of
arrivals during the service times has a Poisson distribution with parameter λt. Therefore, if G
has density g

P(N = m) =

∫ ∞
0

P(N = m|G = t)g(t)dt

=

∫ ∞
0

(λt)m

m!
e−λtg(t)dt

= E
(

(λG)m

m!
e−λG

)
.

If G is discrete, a similar argument works. The rest of the proof is the same as for M/M/1
queues (cf. the discussion before Proposition 120). In particular, when the departing customer
leaves an empty system behind, there has to be an arrival before the next service time starts.

2
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For the M/M/1 queue, we defined the traffic intensity ρ = λ/µ, in terms of the arrival
rate λ = 1/E(Y ) and the (potential) service rate µ = 1/E(G) for a generic inter-arrival time
Y ∼ Exp(λ) and service time G ∼ Exp(µ). We say “potential” service rate, because in the
queueing system, the server may have idle periods (empty system), during which there is no
service. Indeed, a main reason to consider traffic intensities is to describe whether there are idle
periods, i.e. whether the queue length is a recurrent process.

If G is not exponential, we can interpret “service rate” as asymptotic rate. Consider a
renewal process N with inter-renewal times distributed as G. By the strong law of renewal
theory Nt/t → 1/E(G). It is therefore natural, for the M/G/1 queue, to define the traffic
intensity as ρ = λE(G).

Proposition 123 Let ρ = λE(G) be the traffic intensity of an M/G/1 queue. If ρ < 1, then V
has a unique invariant distribution ξ. This ξ has probability generating function

∞∑
k=0

ξks
k = (1− ρ)(1− s) 1

1− s/E(eλ(s−1)G)
.

Proof: By the uniqueness theorem for probability generating functions,

ξj =

j+1∑
i=0

ξidi,j ⇐⇒ φ(s) :=

∞∑
j=0

ξjs
j =

∞∑
j=0

j+1∑
i=0

ξidi,js
j .

To calculate the right-hand side, first note that

∞∑
m=0

dk+1,k+ms
m =

∞∑
m=0

E
(

(sλG)m

m!
e−λG

)
= E(e(s−1)λG).

Then

∞∑
j=0

j+1∑
i=0

ξidi,js
j =

∞∑
j=0

ξ0d0,js
j +

∞∑
k=0

∞∑
m=0

ξk+1dk+1,k+ms
k+m

= E(e(s−1)λG)

(
ξ0 +

∞∑
k=0

ξk+1s
k

)
= E(e(s−1)λG)s−1 (φ(s)− ξ0(1− s)) ,

and this equals φ(s) if and only if

φ(s) =
ξ0(1− s)

1− s/E(e(s−1)λG)
.

For φ to be a probability generating function, we need φ(1) = 1, and de l’Hôpital’s rule yields
ξ0 = 1− ρ. 2

14.2 Waiting times in M/G/1 queues

An important quantity in queueing theory is the waiting time of a customer. Here we have to
be specific about the service discipline. We will assume throughout that customers queue and
are served in their order of arrival. This discipline is called FIFO (First In First Out). Other
disciplines like LIFO (Last In First Out) with or without interruption of current service can also
be studied.

Clearly, under the FIFO discipline, the waiting time of a given customer depends on the
service times of customers in the queue when he arrives. Also, all customers XDn in the system
when a customer leaves at time Dn, have arrived during his waiting time Wn and service times
Gn.
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Proposition 124 If the system has been running for a long time before time 0, i.e. X0 ∼ ξ,
then the waiting time Wn of any customer n ≥ 1 has distribution given by

E(eγWn) =
(1− ρ)γ

λ+ γ − λE(eγG)
.

Proof: We have not established equilibrium of X at the arrival times of customers, but at
departure times, so we argue from the time when a customer leaves. Due to the FIFO discipline,
he will leave behind all those customers that arrived during his waiting time W and his service
time G. Given T := W +G = t, their number N has a Poisson distribution with parameter λt
so that

E(sN ) =

∫ ∞
0

E(sN |T = t)fT (t)dt =

∫ ∞
0

eλt(s−1)fT (t)dt

= E(eλT (s−1)) = E(eλ(s−1)W )E(eλ(s−1)G).

By stationarity, N ∼ ξ, and we take E(sN ) from Proposition 123. We deduce the required
formula by setting γ = λ(s− 1) and by solving for E(eγW ). 2

Corollary 125 In the special case of M/M/1, the distribution of W is given by

P(W = 0) = 1− ρ and P(W > w) = ρe−(µ−λ)w, w ≥ 0.

Proof: We calculate the moment generating function of the proposed distribution

eγ0(1− ρ) +

∫ ∞
0

eγtρ(µ− λ)e−(µ−λ)tdt =
µ− λ
µ

+
λ

µ

µ− λ
µ− λ− γ

=
µ− λ
µ

µ− γ
µ− λ− γ

.

From the preceding proposition we get for our special case

E(eγW ) =
γ(µ− λ)/µ

λ+ γ − λµ/(µ− γ)
=
µ− λ
µ

(µ− γ)γ

(λ+ γ)(µ− γ)− λµ

and we see that the two are equal. We conclude by the Uniqueness Theorem for moment
generating functions. 2

14.3 G/M/1 queues

For G/M/1 queues, the arrival process is a renewal process. Clearly, by the renewal property and
by the lack of memory property of the service times, the queue length process X starts afresh
after each arrival, i.e. Ũn = XAn , n ≥ 0, is a Markov chain on {1, 2, 3, . . .}, where An is the nth
arrival time. It is actually more natural to consider the Markov chain Un = Ũn − 1 = XAn− on
N.

It can be shown that for M/M/1 queues the invariant distribution of U is the same as the
invariant distribution of V and of X. For general G/M/1 queues we get

Proposition 126 Let ρ = 1/(µE(A1)) be the traffic intensity. If ρ < 1, then U has a unique
invariant distribution given by

ξk = (1− q)qk, k ∈ N,

where q is the smallest positive root of q = E(eµ(q−1)A1).
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Proof: First note that given an inter-arrival time Y = y, a Poi(µy) number of customers are
served, so U has transition probabilities

ai,i+1−j = E
(

(µY )j

j!
e−µY

)
, j = 0, . . . , i; ai,0 = 1−

i∑
j=0

ai,i+1−j .

Now for any geometric ξ, we get, for k ≥ 1, from Tonelli’s theorem,

∞∑
i=k−1

ξiaik =
∞∑
j=0

ξj+k−1aj+k−1,j

=

∞∑
j=0

(1− q)qj+k−1E
(

(µY )j

j!
e−µY

)
= (1− q)qk−1E

(
e−µY (1−q)

)
,

and clearly this equals ξk = (1 − q)qk if and only if q = E(eµ(q−1)Y ) =: f(q), as required. Note
that both sides are continuously differentiable on [0, 1) and on [0, 1] if and only if limits q ↑ 1
are finite, f(0) > 0, f(1) = 1 and f ′(1) = E(µY ) = 1/ρ, so there is a solution if ρ < 1, since
then f(1 − ε) < 1 − ε for ε small enough. The solution is unique, since there is at most one
stationary distribution for the irreducible Markov chain U . The case k = 0 can be checked by a
similar computation, so ξ is indeed a stationary distribution. 2

Proposition 127 The waiting time W of a customer arriving in equilibrium has distribution

P(W = 0) = 1− q, P(W > w) = qe−µ(1−q)w, w ≥ 0.

Proof: In equilibrium, an arriving customer finds a number N ∼ ξ of customers in the queue in
front of him, each with a service of Gj ∼ Exp(µ). Clearly P(W = 0) = ξ0 = 1−q. Also since the
conditional distribution of N given N ≥ 1 is geometric with parameter q and geometric sums of
exponential random variables are exponential, we have that W given N ≥ 1 is exponential with
parameter µ(1− q). 2

Alternatively, we can write this proof in formulas as a calculation of P(W > y) by condition-
ing on N and by using Tonelli’s theorem to interchange summation and integration:

P(W > w) =
∞∑
n=0

P(N = n)P(W > w|N = n)

= 0 +

∞∑
n=1

qn(1− q)
∫ ∞
w

µn

(n− 1)!
xn−1e−µxdx

=

∫ ∞
w

e−µxqµ(1− q)
∞∑
n=1

µn−1

(n− 1)!
qn−1xn−1dx

= q

∫ ∞
w

µ(1− q) exp{−µx+ µqx}dx = q exp{−µ(1− q)y},

where we used that the sum of n independent identically exponentially distributed random
variables is Gamma distributed.
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Queueing networks and some further
applications and generalisations

Reading: Norris 5.2.1-5.2.6; Grimmett-Stirzaker 11.2, 11.7; Ross 6.6, 8.4

In this lecture we study tandem queues and queueing networks to demonstrate how methods
developed for general countable state space S apply to state spaces such as N2 and Nm, m ≥ 3.
The lecture notes conclude by giving a summary of the course and pointers for further study.

15.1 Tandem queues

The simplest non-trivial network of queues is a so-called tandem system that consists of two
queues with one server each, having independent Exp(µ1) and Exp(µ2) service times, respec-
tively. Customers join the first queue according to a Poisson process of rate λ, and on completing

service immediately enter the second queue. We denote by X
(1)
t the length of the first queue at

time t ≥ 0 and by X
(2)
t the length of the second queue at time t ≥ 0.

Proposition 128 The queue length process X = (X(1), X(2)) is a continuous-time Markov
chain with state space S = N2 and non-zero transition rates

q(i,j),(i+1,j) = λ, q(i+1,j),(i,j+1) = µ1, q(i,j+1),(i,j) = µ2, i, j ∈ N.

Proof: Just note that in state (i + 1, j + 1), three exponential clocks are ticking, that lead to
transitions at rates as described. Similarly, there are fewer clocks for (0, j + 1), (i + 1, 0) and
(0, 0) since one or both servers are idle. The lack of memory property makes the process start
afresh after each transition. A standard inductive argument completes the proof. 2

Proposition 121 yields that the departure process of the first queue, which is now also the
arrival process of the second queue, is a Poisson process with rate λ, provided that the first
queue is in equilibrium. This can be achieved if λ < µ1.

Proposition 129 X is positive recurrent if and only if ρ1 := λ/µ1 < 1 and ρ2 := λ/µ2 < 1.
The unique stationary distribution is then given by

ξ(i,j) = ρi1(1− ρ1)ρ
j
2(1− ρ2)

i.e. in equilibrium, the lengths of the two queues at any fixed time are independent.

Proof: As shown in Example 54, ρ1 ≥ 1 violates positive recurrence, and expected return

times for X and X(1) satisfy m(0,0) ≥ m
(1)
0 = ∞. If ρ1 < 1 and X(1) is in equilibrium, then

by Proposition 121, the arrival process for the second queue is a Poisson process at rate λ, and
ρ2 ≥ 1 would violate positive recurrence of X(2). Specifically, if we assume m0,0 < ∞, then we

get the contradiction ∞ = m
(2)
0 ≤ m(0,0) <∞.

If ρ1 < 1 and ρ2 < 1, ξ as given in the statement of the proposition is an invariant distribution,
it is easily checked that the (i+ 1, j + 1) entry of ξQ = 0 holds:

ξ(i,j+1)q(i,j+1),(i+1,j+1) + ξ(i+2,j)q(i+2,j),(i+1,j+1) + ξ(i+1,j+2)q(i+1,j+2),(i+1,j+1)

+ ξ(i+1,j+1)q(i+1,j+1),(i+1,j+1) = 0

61
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for i, j ∈ N, and similar equations for states (0, j + 1), (i+ 1, 0) and (0, 0). It is unique since X
is clearly irreducible (we can find paths between any two states in N2). 2

We stressed that queue lengths are independent at fixed times. In fact, they are not in-

dependent in a stronger sense, e.g. (X
(1)
s , X

(1)
t ) and (X

(2)
s , X

(2)
t ) for s < t turn out to be

dependent. More specifically, consider X
(1)
s − X(2)

t = n for big n, then it is easy to see that

0 < P(X
(2)
t = 0|X(1)

s − X
(1)
t = n) → 0 as n → ∞, since it is increasingly unlikely that n

customers are served by server 2 during [s, t].

15.2 Closed and open migration networks

More general queueing systems are obtained by allowing customers to move in a system of m
single-server queues according to a Markov chain on {1, . . . ,m}. For a single customer, no queues
ever occur, since he is simply served where he goes. If there are r customers in the system with
no new customers arriving and no existing customers departing, the system is called a closed
migration network. If at some (or all) queues, also new customers arrive according to a Poisson
process, or at some (or all) queues, customers served may leave the system, the system is called
an open migration network.

The tandem queue is an open migration network with m = 2, where new customers only
arrive at the first queue and existing customers only leave the system after service from the
second server. The Markov chain is deterministic and sends each customer from state 1 to state
2: π12 = 1. Customers then go into an absorbing exit state 0, say, π2,0 = 1, π0,0 = 1. The
following are two results that can be shown using similar methods to those used for Propositions
128 and 129.

Proposition 130 If service times are independent Exp(µk) at server k ∈ {1, . . . ,m}, arrivals
occur according to independent Poisson processes of rates λk, k = 1, . . . ,m, and departures are
modelled by transitions to another server or an exit state 0, according to transition probabilities
πk,`, then the queue-lengths process X = (X(1), . . . , X(m)) is a continuous-time Markov chain.
Its non-zero transition rates are

qx,x+ek = λk, qx,x−ek+e` = µkπk`, qx,x−ek = µkπk0

for all k, ` ∈ {1, . . . ,m}, x = (x1, . . . , xm) ∈ Nm such that xk ≥ 1 for the latter two, and where
ek = (0, . . . , 0, 1, 0, . . . , 0) is the kth unit vector.

Proposition 131 Suppose X = (X(1), . . . , X(m)) models a closed migration network with irre-
ducible migration chain. Then the following hold.

(i) The total number of customers X
(1)
t + · · ·+X

(m)
t remains constant over time t ≥ 0.

(ii) If X
(1)
0 + · · ·+X

(m)
0 = 1, then the continuous-time migration chain Kt = k if X

(k)
t = 1 has

as holding rate in k the service rate µk of the kth server, k ∈ {1, . . . ,m}, and K possesses
a unique stationary distribution η on {1, . . . ,m}.

(iii) For any r = X
(1)
0 + · · ·+X

(2)
0 ≥ 1, the process X has the unique invariant distribution

ξx = Br

m∏
k=1

ηxkk , for all x ∈ Nm such that x1 + · · ·+ xm = r,

where η is the invariant distribution of the continuous-time migration chain of (ii), and
Br is a normalising constant.

ξ has product form on each communicating class Cr = {x ∈ Nm : x1+· · ·+xm = r}, but the queue
lengths at servers k = 1, . . . ,m under the stationary distribution are not independent, not even
at fixed times in stationarity, since the admissible x-values are constrained by x1 + · · ·+xm = r.
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15.3 Summary of the course

This course is about stochastic process models X = (Xt)t≥0 in continuous time and (mostly) a
discrete state space S, often N. Applications include those where X describes

• counts of births, atoms, bacteria, visits, trials, arrivals, departures, insurance claims, etc.,

• the size of a population, the number of buses in service, the length of a queue,

and others. Important is the structure, the transition mechanism in the real world that we wish
to model by X. Memory plays an important role. We use the following mathematical concepts

• Independence (of individuals in population models, of counts over disjoint time intervals,
of service times, of different ingredients to a model etc.),

• Markov property (lack of memory, exponential holding times; past irrelevant for the future
except for the current state),

• Renewal property (information on previous states irrelevant, but duration in state relevant;
“Markov property” at transition times),

• Stationarity, equilibrium (behaviour homogeneous in time; for Markov chains, invariant
marginal distribution; for renewal processes, stationary increments).

Once we have a model X for the real world process, which satisfies such properties, we study it
under the model assumptions. We study

• different descriptions of X (jump chain - holding times, transition probabilities - forward-
backward equations, infinitesimal behaviour),

• convergence to equilibrium (invariant distributions, convergence of transition probabilities,
ergodic theorem; strong law and CLT of renewal theory, renewal theorems),

• hitting times, excess life, return times, waiting times, ruin probabilities,

• odd/undesirable(?) behaviour (explosion, transience, arithmetic inter-renewal times).

Techniques:

• conditioning, often on the first jump (one-step analysis),

• functions of independent random variables are independent,

• detailed balance equations,

• algebra of limits for almost sure convergence,

• renewal equations and Key renewal theorem.

The following sections contain some natural generalisations of concepts studied in this course.
They are, of course, non-examinable.
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15.4 Duration-dependent transition rates

Renewal processes can be thought of as duration-dependent transition rates. If the inter-renewal dis-
tribution is not exponential, then (at least some) residual distributions will not be the same as the full
inter-renewal distribution, but we can still express, say for Z with density f that

P(Z − t > s|Z > t) =
P(Z > t+ s)

P(Z > t)
and fZ−t|Z>t(s) =

f(t+ s)

P(Z > t)
.

If we define λ(t) =
f(t)

P(Z > t)
=
−F ′(t)
F (t)

, where F (t) = P(Z > t) and in particular F (0) = 1, we can write

F (t) = exp

{
−
∫ t

0

λ(s)ds

}
and f(t) = λ(t) exp

{
−
∫ t

0

λ(s)ds

}
.

We can then also express the residual distributions in terms of λ(s)

P(Z − t > s|Z > t) = exp

{
−
∫ t+s

t

λ(r)dr

}
.

λ(t) can be interpreted as the instantaneous arrival rate time t after the previous arrival. Similarly, we
can use this idea in Markov models and split a holding rate λi(d) depending on the duration d of the
current visit to state i into transition rates λi(d) =

∑
j 6=i qij(d). This will be explored in SB3b Statistical

Lifetime-Models, where Z is usually modelling a lifetime. The context is the estimation and statistical
comparison of life-time distributions and related models.

15.5 Spatial Poisson processes

In the case of Poisson counts, one can also look at intensity functions on R2 or Rd and look at “arrivals”
as random points in the plane.

N([0, t]× [0, z]) = X(t, z) ∼ Poi

(∫ t

0

∫ z

0

λ(s, y)dyds

)
and such that counts in disjoint rectangles are independent Poisson variables.

15.6 Markov processes in uncountable state spaces (R or Rd)

We have come across some processes for which we could have proved a Markov property, the age process
(At)t≥0 of a renewal process, the excess process (Et)t≥0 of a renewal process, but also the processes
(Ct)t≥0 and (Rt)t≥0 with stationary independent increments that arose in insurance ruin by combining
Poisson arrival times with jump sizes. A systematic study of such Markov processes in R is technically
much harder, although many ideas and results transfer from our countable state space model.

Diffusion processes as a special class of such Markov processes are studied in a Finance context in
B8.3 Mathematics of Financial Derivatives and they appear from a more theoretical perspective in C8.1
Stochastic Differential Equations. Some examples also feature in MS4 Stochastic Models for Mathematical
Genetics.

One nice class of processes are processes with stationary independent increments, so-called Lévy
processes. General Lévy processes can be built from three ingredients. The first is a deterministic linear
drift. The second is a Brownian motion B, which features strongly in B8.2 Continuous Martingales, as
well as B8.3 Mathematics of Financial Derivatives. The third is a compound Poisson process C such as
the claim size process C in ruin theory. Then any process Xt = µt + σBt + Ct is a Lévy process and
any Lévy process is of this form, if C is allowed to contain a component that is a (martingale limit of) a
compound Poisson processes. In fact, C may have infinitely many jumps in a finite interval, that can be
described by a spatial Poisson process on [0,∞)× R∗.

15.7 Stationary processes

We have come across stationary Markov chains and stationary increments of other processes. Stationarity
is a concept that can be studied separately. In our examples, the dependence structure of processes
was simple: independent increments, or Markovian dependence, independent holding times etc. More
complicated dependence structures may be studied.



Appendix A

Conditioning and stochastic
modelling

Reading: Grimmett-Stirzaker 3.7, 4.6
Further reading: Grimmett-Stirzaker 4.7; CT4 Unit 1

This lecture consolidates the ideas of conditioning and modelling. Along the way, we explain
the full meaning of statements such as the Markov properties of Lecture 1.

A.1 Modelling of events

As in the Prelims and Part A courses, random variables are defined as functions on a probability
space (Ω,F ,P), where Ω is the sample space, F is a collection of subsets of Ω called events, the
probability measure P assigns a probability in [0, 1] to each event. A probability space satisfies

• Ω ∈ F ; • A ∈ F ⇒ Ac = Ω \A ∈ F ; • An ∈ F , n ≥ 1, ⇒
∞⋃
n=1

An ∈ F .

• P(Ω) = 1; • An ∈ F , n ≥ 1, disjoint ⇒ P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An).

Random variables X : Ω → X, where X is typically either a subset of R or any countable set
S, but can also be a space of functions such as X = {f : [0,∞)→ S right-continuous}, are such
that

• {X ∈ B} := X−1(B) = {ω ∈ Ω: X(ω) ∈ B} ∈ F for all (measurable) B ⊆ X.

This course is not based on measure theory, and in fact we will only occasionally have to refer
back to these properties for clarity of argument.

Modelling means specifying a mathematical model for a real-world phenomenon. Stochastic
modelling include some randomness, i.e. some real-world events are assigned probabilities or
some real-world observables are assigned distributions. At first, real-world events can be named
e.g. A1 =“the die shows an even number” and A2 =“the first customer arrives before 10am”. A
stochastic model identifies such an event as a subset of a sample space Ω and assigns probabilities.
We seem to be able to write down some probabilities directly without much sophistication
(P(A1) = 0.5? still making implicit assumptions about the fairness of the die and the conduct
of the experiment). Others require less obvious specification of a stochastic model (P(A2) =?).

Hardly any real situations involve genuine randomness. It is rather our incomplete percep-
tion/information that makes us think there was randomness. Nevertheless, assuming a specific
random model to inform our decision-making can be very helpful and lead to decisions that are
sensible/good/beneficial in some sense.

Mathematical models always make assumptions and reflect reality only partially. The fol-
lowing situation is quite common: the better a model represents reality, the more complicated
it is to analyse. There is a trade-off here. In any case, we must base all our calculations on the
model specification, the model assumptions. Translating reality into models is at least partly a
non-mathematical task. Analysing a model is purely mathematical.

Models have to be consistent, i.e. they must not contain contradictions. This statement may
seem obvious, but the point is that not all contradictions are immediately apparent. There

65
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are models that have undesirable features that cannot be easily removed, least by postulating
the contrary. E.g., you may wish to specify a model for customer arrival where arrival counts
over disjoint time intervals are independent, arrival counts over time intervals of equal lengths
have the same distribution (cf. Remark 5 (ii)-(iii)), and times between two arrivals have a non-
exponential distribution. Well, such a model does not exist (we won’t prove this statement now,
it’s a bit too hard at this stage). On the other hand, within a consistent model, all properties
that were not specified in the model assumptions have to be derived from these. Otherwise it
must be assumed that the model may not have the property.

Suppose we are told that a shop opens at 9.30am, and on average, there are 10 customers per
hour. One model could be to assume that a customer arrives exactly every six minutes. Another
model could be to assume customers arrive according to a Poisson process at rate λ = 10 (time
unit=1 hour). Whichever model we use, we can “calculate” P(A2), and it is not the same in
the two models, so we should reflect this in our notation. Since A2 does not really change from
one model to the other, it had better be P that changes, and we may wish to write P̃ for the
second model. The probability measure P should be thought of as defining the randomness.
Similarly, we can express dependence on a parameter by P(λ), dependence on an initial value
by Pk. Informally, for a Poisson process model, we set Pk(A) := P(A|X0 = k) for all events A
(formally, this should make us wonder whether P(X0 = k) > 0, and in fact, we first define Pk
and could then write P(A|X0 = k) := Pk(A) as a long-hand notation).

Aside: Technically, we cannot in general call all subsets of Ω events if Ω is uncountable, but we will
not worry about this, since it is hard to find examples of non-measurable sets. ω should be thought of as
a scenario, a realisation of all the randomness, which we typically express in terms of random variables
X(ω). What matters are (joint!) distributions of random variables, not usually the precise form of
(Ω,F ,P). It is important, though, that (Ω,F ,P) exists for all our purposes to make sure that the random
objects we study exist. We will assume that all our random variables can be defined as (measurable)
functions on some (Ω,F ,P). This existence can be proved for all our purposes, using measure theory.

In fact, when we express complicated families of random variables such as a Poisson process (Xt)t≥0
in terms of a countable family (Zn)n≥0 of independent random variables, we do this for two reasons.

The intuitive reason may be apparent: countable families of independent variables are conceptually

easier than uncountable families of dependent variables. The formal reason is that a result in measure

theory says that there exists a probability space (Ω,F ,P) on which we can define countable families of

independent variables whereas any more general result for uncountable families or dependent variables

requires additional assumptions or other caveats.

It is very useful to think about random variables Zn as functions Zn(ω), because it immedi-
ately makes sense to define a Poisson process Xt(ω) as in Definition 1, by defining new functions
in terms of old functions. A certain class of probability problems can be solved by applying
analytic rules to calculations involving functions of random variables (transformation formula
for densities, expectation of a function of a random variable in terms of its density or prob-
ability function, etc.). Here we are dealing more explicitly with random variables and events
themselves, operating on them directly.

This course is not based on measure theory, but you should be aware that some of the proofs
are only mathematically complete if based on measure theory. Ideally, this only means that we
apply an easily stated result from measure theory that is intuitive enough to believe without
proof. In a few cases, however, the gap is more serious. We will identify technicalities, but
without drawing attention away from the probabilistic arguments that we develop in this course
and that are useful for applications.

B8.1 Martingales Through Measure Theory provides as pleasant an introduction to measure
theory as can be given. That course nicely complements this course in providing the formal
basis for probability theory in general and hence for this course in particular. However, it is by
no means a co-requisite, and when we do refer to this course, it is likely to be to material that
has not yet been covered there. Williams’ Probability with Martingales is the recommended
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book reference.

A.2 Conditional probabilities, densities and expectations

Conditional probabilities were introduced in Prelims as

P(B|A) =
P(B ∩A)

P(A)
,

for events A,B ⊆ Ω, where we require P(A) > 0.

Example 132 Let X be a Poisson process. Then

P(Xt = k + j|Xs = k) =
P(Xt −Xs = j,Xs = k)

P(Xs = k)
= P(Xt −Xs = j) = P(Xt−s = j),

by the independence and stationarity of increments, Remark 5 (ii)-(iii).

Conditional densities were introduced in Part A as

fS|T (s|t) = fS|T=t(s) =
fS,T (s, t)

fT (t)
.

Example 133 Let X be a Poisson process. Then, for t > s,

fT2|T1=s(t) =
fT1,T2(s, t)

fT1(s)
=
fZ0,Z1(s, t− s)

fZ0(s)
=
fZ0(s)fZ1(t− s)

fZ0(s)
= fZ1(t− s) = λe−λ(t−s),

by the transformation formula for bivariate densities to relate fT1,T2 to fZ0,Z1 , and independence
of Z0 and Z1.

Conditioning has to do with available information. In the real world, we often observe a
process with time. When we have set up a stochastic model, e.g. a Poisson process with a
known parameter λ > 0. (If we don’t know λ, we should estimate λ and update estimates as we
observe the real-world process, but we do not worry about this in this course.) It is instructive to
think of updating the stochastic process by its realisation in the real world as time evolves. If the
first arrival takes a long time to happen, this gives us information about the second arrival time
T2, simply since T2 = T1 +Z1 > T1. When we eventually observe T1 = s, the conditional density
of T2 given T1 = s takes into account this observation and captures the remaining stochastic
properties of T2. The result of the formal calculation to derive the conditional density is in
agreement with the intuition that if T1 = s, T2 = T1 + Z1 ought to have the distribution of Z1

shifted by s.

Example 134 Conditional probabilities and conditional densities are compatible in that

P(S ∈ B|T = t) =

∫
B
fS|T=t(s)ds = lim

ε↓0
P(S ∈ B|t ≤ T ≤ t+ ε),

provided only that the distribution of (S, T ) is sufficiently smooth. To see this, when (s, t) 7→
fS,T (s, t) is sufficiently smooth (e.g. right-continuous in the t-variable and bounded), we check
that for all intervals B = (a, b)

P(S ∈ B|t ≤ T ≤ t+ ε) =
P(S ∈ B, t ≤ T ≤ t+ ε)

P(t ≤ T ≤ t+ ε)
=

1
ε

∫ t+ε
t

∫
B fS,T (s, u)dsdu

1
εP(t ≤ T ≤ t+ ε)

and under the smoothness condition (by dominated convergence, Tonelli’s theorem etc., see
Lecture 3 for statements of these), this tends to∫

B fS,T (s, t)ds

fT (t)
=

∫
B
fS|T=t(s)ds = P(S ∈ B|T = t).
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Similarly, we can also define the following for discrete X and continuous T , when the limits
exist:

P(X = k|T = t) = lim
ε↓0

P(X = k|t ≤ T ≤ t+ε) and fT |X=k(t) = lim
ε↓0

1

ε
P(t ≤ T ≤ t+ε | X = k).

One can define conditional expectations in analogy with unconditional expections, e.g. in the
latter case by

E(X|T = t) =

∞∑
j=0

jP(X = j|T = t).

Proposition 135 (a) If X and Y are (dependent) discrete random variables in N, then

E(X) =

∞∑
n=0

E(X|Y = n)P(Y = n).

(b) If X and T are jointly continuous random variables in (0,∞) or

(c) if X is discrete and T is continuous, and if T has a right-continuous density, then

E(X) =

∫ ∞
0

E(X|T = t)fT (t)dt.

Proof: (c) We start at the right-hand side∫ ∞
0

E(X|T = t)fT (t)dt =

∫ ∞
0

∞∑
j=0

jP(X = j|T = t)fT (t)dt

and calculate

P(X = j|T = t) = lim
ε↓0

P(X = j, t ≤ T ≤ t+ ε)

P(t ≤ T ≤ t+ ε)

= lim
ε↓0

1
εP(t ≤ T ≤ t+ ε|X = j)P(X = j)

1
εP(t ≤ T ≤ t+ ε)

=
fT |X=j(t)P(X = j)

fT (t)

so that we get on the right-hand side∫ ∞
0

∞∑
j=0

jP(X = j|T = t)fT (t)dt =

∞∑
j=0

jP(X = j)

∫ ∞
0

fT |X=j(t)dt = E(X)

after interchanging summation and integration. This is justified by Tonnelli’s theorem that we
state in Lecture 3.

(b) is similar to (c).
(a) is more elementary and left to the reader. 2

Statement and argument hold for left-continuous densities and approximations from the left,
as well. For continuous densities, one can also approximate {T = t} by {t− ε ≤ T ≤ t+ ε} (for
ε < t, and normalisation by 2ε, as adequate).

Recall that we formulated the Markov property of the Poisson process as

P((Xt+s)s≥0 ∈ B|Xt = k, (Xr)r≤t ∈ A) = Pk((Xt+s)s≥0 ∈ B)

for all events {(Xr)r≤t ∈ A} such that P(Xt = k, (Xr)r≤t ∈ A) > 0, and {(Xt+u)u≥0 ∈ B}. For
certain sets A with zero probability, this can still be established by approximation.
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A.3 Independence and conditional independence

Recall that independence of two random variables is defined as follows. Two discrete random
variables X and Y are independent if

P(X = j, Y = k) = P(X = j)P(Y = k) for all j, k ∈ S.

Two jointly continuous random variables S and T are independent if their joint density factorises,
i.e. if

fS,T (s, t) = fS(s)fT (t) for all s, t ∈ R, where fS(s) =

∫
R
fS,T (s, t)dt.

Recall also (or check) that this is equivalent, in both cases, to

P(S ≤ s, T ≤ t) = P(S ≤ s)P(T ≤ t) for all s, t ∈ R.

In fact, it is also equivalent to

P(S ∈ A, T ∈ B) = P(S ∈ B)P(T ∈ B) for all (measurable) A,B ⊂ R,

and we define more generally:

Definition 136 Let X and Y be two random variables with values in any, possibly different
spaces X and Y. Then we call X and Y independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all (measurable) A ⊂ X and B ⊂ Y.

We call X and Y conditionally independent given a third random variable Z if for all z ∈ S (if
Z has values in S) or z ∈ [0,∞) (if Z has values in [0,∞)),

P(X ∈ A, Y ∈ B|Z = z) = P(X ∈ A|Z = z)P(Y ∈ B|Z = z).

Remark and Fact 137 1 Conditional independence is in many ways like ordinary (uncondi-
tional) independence. E.g., if X is discrete, it suffices to consider A = {x}, x ∈ X. If X is
real-valued, it suffices to consider A = (−∞, x], x ∈ R. If X is bivariate, it suffices to consider
all A of the form A = A1 ×A2.

If X = (Xr)r≤t, it suffices to consider A = {Xr1 = x1, . . . , Xrn = xn} for all 0 ≤ r1 < · · · <
rn ≤ t, x1, . . . , xn ∈ S, n ≥ 1. This is how Proposition ??(ii) can be interpreted, applied and
proved.

We conclude with a fact that may seem obvious, but does not follow immediately from the
definitions. Also the approximation argument only gives some special cases.

Fact 138 Let X be any random variable, and T a [0,∞)-valued random variable with right-
continuous density. Then, for all (measurable) f : X× [0,∞)→ [0,∞) and t ≥ 0, we have

E(f(X,T )|T = t) = E(f(X, t)|T = t).

Furthermore, if X and T are independent and g : X→ [0,∞) (measurable), t ≥ 0, we have

E(g(X)|T = t) = E(g(X)).

If X takes values in [0,∞) also, example for f are e.g. f(x, t) = 1{x+t>s}, where 1{x+t>s} := 1

if x+ t > s and 1{x+t>s} := 0 otherwise; or f(x, t) = eλ(x+t) in which case the statements are

P(X + T > s|T = t) = P(X + t > s|T = t) and E(eλ(X+T )|T = t) = eλtE(eλX |T = t),

and the condition {T = t} can be removed on the right-hand sides if X and T are independent.
This can be shown by the approximation argument.

The analogue of Fact 138 for discrete T is elementary.

1Facts are theorems that we cannot fully prove in this course. Note also that there is a grey zone between
theorems/propositions and facts, since partial proofs of facts or full proofs of theorems/propositions sometimes
appear on assignment sheets, in the main or optional parts.
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A.4 Method: One-step analysis, conditioning on T1

The main conditioning method in this course is to condition on the first event. In the case of a
discrete-time Markov chain this is the value after the first step. In the case of a Poisson process
(or simple birth process or renewal process, as studied later), this is the time of the first arrival.
In the case of a continuous-time Markov chain, it will be a combination of the two.

Example 139 Let X ∼ PP(λ) and m(u) = E(Xu), u ≥ 0. Then by Proposition 135(c),

m(u) = E(Xu) =

∫ ∞
0

E(Xu|T1 = t)fT1(t)dt =

∫ u

0
E(1 + X̃u−T1 |T1 = t)λe−λtdt,

where X̃s = XT1+s− 1 is a PP(λ) independent of T1 = Z0, since X̃s = #{n ≥ 1: T̃n ≤ s}, where
Z̃n = Zn+1 ∼ Exp(λ), n ≥ 0, are independent, and independent of Z0. By Fact 138, this yields

m(u) =

∫ u

0
(1 + E(Xu−t))λe

−λtdt = 1− e−λu +

∫ u

0
m(r)λe−λ(u−r)dr.

If we multiply this by eλu, differentiate and cancel eλu again, we find m′(u) = λ. Since also
m(0) = E(X0) = 0, we obtain m(t) = λt for all t ≥ 0, using a quite different argument from
Remark 5. The real power of this argument will be revealed when applied for processes other
than the Poisson process, for which many stronger tools yield stronger results.

A.5 [0,∞]-valued random variables and some useful theorems

In the next section, we will study T∞ := limn→∞ Tn =
∑

n≥0 Zn. In general, this is not a
finite random variable, but may take values in [0,∞], infinity included. Recall that a function
F : [0,∞) → [0, 1] is a cumulative distribution for a distribution on [0,∞) if and only if F
is right-continuous increasing with F (∞−) := limt→∞ F (t) = 1. We drop the requirement
F (∞−) = 1:

Definition 140 A right-continuous increasing function F : [0,∞) → [0, 1] with F (∞−) ≤ 1
is called a cumulative distribution function. A function T : Ω → [0,∞] on a probability space
(Ω,F ,P) is called a [0,∞]-valued random variable if {T ≤ t} ∈ F for all t ∈ [0,∞). Its
cumulative distribution function is FT (t) = P(T ≤ t), t ∈ [0,∞). Its expectation is defined as

E(T ) :=

∫ ∞
0

P(T > t)dt =

∫ ∞
0

(1− FT (t))dt.

We have P(T ≤ t) → P(T < ∞) = F (∞−) and P(T = ∞) = 1 − P(T < ∞) = 1 − F (∞−).
Note that E(T ) =∞ whenever P(T =∞) > 0 since then P(T > t) ≥ P(T =∞) > 0 makes the
integral infinite. Recall that E(T ) =∞ is also possible if P(T =∞) = 0, e.g. if P(T > t) = 1/t,
t ≥ 1, so that E(T ) =

∫∞
1 (1/t)dt =∞. Note also that, if T is N ∪ {∞}-valued, the definition of

E(T ) implies

E(T ) =
∑

0≤n≤∞
nP(T = n) =∞P(T =∞) +

∑
0≤n<∞

nP(T = n)

and if FT is differentiable with F ′T = fT on (0,∞) then

E(T ) =∞P(T =∞) +

∫
(0,∞)

tfT (t)dt .

Here, we use the convention that ∞× p =∞ for p > 0, and ∞× 0 = 0 to include the classical
case P(T <∞) = 1.

The following is a result from measure theory that we will not prove here, but that we will
refer to when we interchange certain sums, expectations and integrals.
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Fact 141 (Tonelli) The order of integration, countable summation and expectation can be in-
terchanged whenever the integrand/summands/random variables are nonnegative. Specifically,

E

( ∞∑
n=0

Xn

)
=
∞∑
n=0

E(Xn),

∫ ∞
0

∞∑
n=0

fn(x)dx =
∞∑
n=0

∫ ∞
0

fn(x)dx∫ ∞
0

∫ x

0
f(x, y)dydx =

∫ ∞
0

∫ ∞
y

f(x, y)dxdy,

also when the integrals, sums, random variables or expectations are infinite.

There were already two applications of this, one each in Lectures 1 and 2. You may now
wish to consider again the arguments of Remark 5 and Proposition 135.

Interchanging limits is more delicate, and there are monotone and dominated convergence
for this purpose. In this course we will only interchange limits when this is justified by monotone
or dominated convergence, but we do not have the time to prove these. Here are statements.

Fact 142 (Monotone convergence) Expectations of an increasing sequence of nonnegative
random variables Yn converge limn→∞ E(Yn) = E(limn→∞ Yn), also when the limits or expecta-
tions or random variables are infinite.

Fact 143 (Dominated convergence) Integrals of a pointwise convergent sequence of func-
tions fn → f converge if |fn| ≤ g for an integrable function g. Expectations of a pointwise
convergent sequence of random variables Xn → X converge if |Xn| ≤ Y for an integrable ran-
dom variable Y , i.e.∫

g(x)dx <∞ ⇒ lim
n→∞

∫
fn(x)dx =

∫
lim
n→∞

fn(x)dx =

∫
f(x)dx

E(Y ) <∞ ⇒ lim
n→∞

E(Xn) = E
(

lim
n→∞

Xn

)
= E(X).

For proofs of these (or equivalent or more general statements), we refer to Part A Integration
and B8.1 Martingales Through Measure Theory.


