
Assignment 3 – Part B Applied Probability – Oxford MT 2020 1

3 Sheet 3: Continuous-time Markov chains

Questions 7 to 13 will not be marked. This assignment sheet is due for your 3rd class.

1. Consider a continuous-time Markov chain X on S = N with Q-matrix Q, where the only
non-zero off-diagonal entries of Q are

qn,n+1 = 2n, n ≥ 0, qn,n−1 = 2n, n ≥ 1.

(a) Determine the transition probabilities of the underlying jump chain M and show that
M is null recurrent.

(b) Show that X has a unique stationary distribution and deduce that X is positive
recurrent.

(c) (optional) Find a null recurrent continuous-time Markov chain whose underlying jump
chain M is positive recurrent.

2. Consider Markov chains X and Y with Q-matrices on {1, 2, 3, 4} and {1, 2, 3, 4, 5}

QX =


−1 1/2 1/2 0
1/4 −1/2 0 1/4
1/6 0 −1/3 1/6
0 0 0 0

 and QY =


−3 2 0 0 1
0 −3 3 0 0
0 5 −5 0 0
0 0 0 −2 2
0 0 0 1 −1

 .

(a) What are the communicating classes. For each class, say if it is open or closed, and
recurrent or transient.

(b) For X, calculate the expected time to hit 4 starting from 1

(c) For X, calculate the probability of hitting 3 starting from 1.

(d) For Y , determine all stationary distributions.

(e) (optional) For Y , determine the limit distribution when starting from 1.

Hint: For (b) and (c) you may wish to consider the quantities for arbitrary starting points
and derive linear equations by conditioning on the first transition (time and state).

3. Consider the M/M/1 queue, that is a single-server queue in which customers arrive in
a Poisson process of rate λ and service times are independent identically exponentially
distributed with parameter µ. Let Xt denote the length of the queue at time t including
any customer being served, where X0 = 0.

(a) If the queue length is k ≥ 1, what is the probability that the next customer arrives
before the current customer’s service time ends?

(b) Describe the ‘jump chain’ M of X.

(c) Determine the distribution of the number of arrivals during an Exp(µ) service period.

4. Let X be the length of an M/M/1 queue, as in the previous question, but now assume
that λ < µ.

(a) Find the invariant distribution of X

(b) Find the invariant distribution of the jump chain M .

(c) Formulate the ergodic theorems for X and M . Use this to explain why the invariant
distributions in (a) and (b) are different.
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5. Let X be a renewal process whose inter-renewal times (Zn)n≥0 satisfy 0<σ2=V ar(Z1)<∞
and µ = E(Z1). Deduce from the Central Limit Theorem for (Zn)n≥0 that

Xt − t/µ√
tσ2/µ3

→ Z ∼ Normal(0, 1) in distribution, as t→∞.

Hint: Express probabilities involving Xt in terms of Tn.

6. Proof of the Ergodic Theorem. Let X be an irreducible positive recurrent continuous-
time Markov chain on a countable state space S, with holding time parameters λi and mean

passage times mi, i ∈ S. Denote by H
(m)
i , m ≥ 1, the successive passage times of X in i.

(a) Fix i ∈ S and let X0 = i. Show that the increments Zm = Sm+1−Sm of Sm = H
(m)
i ,

m ≥ 0, form a sequence of independent and identically distributed random variables.

Hint: Use the strong Markov property at Sm, m ≥ 1.

(b) Fix i ∈ S, as in (a). Let X0 = i. Show that

Sm
m
→ mi = E(Z1) almost surely, as m→∞.

What if X0 = j for some j ∈ S with j 6= i?

Hint: Only the distribution of Z0 is different now. Consider Z0 separately.

(c) Prove the following form of the ergodic theorem.

1

t

∫ t

0
1{Xs=i}ds→

1

miλi
almost surely, as t→∞.

Hints: Use (b) and also apply the strong law of large numbers to the holding times at

i. Consider t = H
(m)
i , m→∞, first and deduce the general statement.

The following questions are meant to deepen your understanding of the earlier material and/or
go a little beyond the scope of the course. There will probably not be time for them to be covered
in the classes and they will not be marked, but full solutions will be given on the solution sheets.

7. (a) Detailed balance equations. Let (Xt)t≥0 be a continuous-time Markov chain with
Q-matrix Q = (qij)i,j∈S. Suppose that a distribution ξ = (ξi)i∈S satisfies

ξiqij = ξjqji, for all i, j ∈ S (detailed balance equations).

Show that this implies that ξQ = 0, i.e. that ξ is an invariant distribution of (Xt)t≥0.

(b) Consider the Q-matrix Q =

 −1 1 0
0 −1 1
1 0 −1

. What does this example tell you

about the converse of (a)?

8. For n ≥ 1, let Xn =

{
n3 with probability n−2

0 with probability 1− n−2

(a) Show that Xn → 0 in probability, as n→∞, but that E(Xn) 6→ 0, as n→∞.

(b) (optional) Show that Xn → 0 almost surely.

Now suppose that (Sn)n≥0 is a simple symmetric random walk on Z, started from S0 = 0.
Let Bn = 1{Sn=0}, so Bn = 1 if Sn = 0 and Bn = 0 otherwise.

(c) Show that Bn → 0 in probability, as n→∞.
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(d) We know that (Sn)n≥0 is recurrent. Use this fact to show that Bn does not converge
almost surely, as n→∞.

9. Customers arrive at a store as a Poisson process of rate 2. At the door, two representatives
separately demonstrate the same product to anybody entering the store. Each demonstra-
tion takes a time which is exponentially distributed with parameter 1, and is independent
of other demonstrations. After the demonstration the customer enters the store. When
both representatives are busy, customers go directly into the store. If both representatives
are free at t = 0, show that the probability that both are busy at t > 0 is

2

5
− 2

3
e−2t +

4

15
e−5t.

Hint: You do not want to count customers in the shop. What is your Markov chain? Show
that the process described is indeed a continuous-time Markov chain.

10. Strong Markov property. Let X be a continuous-time Markov chain started from some
state k ∈ S.

(a) Show that the random times defined inductively by T 0
k = 0 and, for n ≥ 0,

Snk := inf{t > Tnk : Xt 6= k}, Tn+1
k := inf{t > Snk : Xt = k}

are stopping times, i.e. the events {Snk ≤ t} and {Tnk ≤ t} can be expressed in terms
of (Xs, s ≤ t), for all t ≥ 0 and n ≥ 0.

Remark: T 1
k , T

2
k , . . . are the successive return times to k.

(b) Suppose now that P(T 1
k < ∞) = 1. What can you say using the Strong Markov

Property about the sequence of random variables (Tn+1
k − Snk )n≥0?

11. Let X be a continuous-time Markov chain in a finite state space S, with Q-matrix Q and
transition matrices P (t), t ≥ 0.

(a) Infinitesimal definition of Markov chains. Show that for all i, j ∈ S, as h ↓ 0

pij(h) = δij + qijh+ o(h) (1)

where δij is defined as 1 if i = j and 0 otherwise.

Hint: Derive lower bounds by restricting to the event that only one jump occurs before
time h. Deduce upper bounds by summing over j ∈ S.

Remark: It can be shown that a right-continuous process (Xt)t≥0 on S is a continuous-
time Markov chain if and only if Xt+h is conditionally independent of (Xr)r≤t given
Xt = i (Markov property) and P (Xt+h = j|Xt = i) = δij + qijh+ o(h) uniformly in t.

(b) A proof that forward equations hold. Show that, as h ↓ 0,

pik(t+ h)− pik(t)
h

=
∑
j∈S

pij(t)qjk + o(1)

and deduce that P (t), t ≥ 0, satisfies the forward equation P ′(t) = P (t)Q, P (0) = I.

12. Matrix exponentials. Consider a Q-matrix Q on a finite state space.

(a) Show that etQ :=
∑
n≥0

tn

n!
Qn, with Q0 the identity matrix, converges componentwise.
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(b) Consider componentwise differentiation
d

dt
etQ. Show that

d

dt
etQ = QetQ = etQQ.

Deduce that A(t) := etQ, t ≥ 0, are the transition matrices of a Q-Markov chain.

Hint: Use the formula for products of power series to see that A(s)A(t) = A(s + t),
and show that A(t) has non-negative entries first for the case qij > 0 for all i 6= j.

(c) For the two-state Markov chain of Question 4, calculate Qn by setting up recurrence
relations for its entries (or otherwise) and hence find etQ. Compare your answer with
Question 4(a).

13. A non-minimal continuous-time Markov chain. Consider the explosive birth process

with rates λn = 2n, n ≥ 0. Denote its Q-matrix by Q. Let Z
(m)
n ∼ Exp(λn), n ≥ 0, m ≥ 1,

be independent. Let N = N ∪ {∞} and define a family of times (T
(m)
n )n∈N,m≥1 by

T
(1)
0 = 0, T (m)

n = T
(m)
0 +

n−1∑
k=0

Z
(m)
k , n ∈ N, T

(m+1)
0 = T (m)

∞ , m ≥ 1.

Define a process X taking values in N by

Xt = n if T
(m)
n ≤ t < T

(m)
n+1, n ≥ 0,m ≥ 1.

Note that this just means that the birth process starts afresh from 0 after explosion. You
may assume that this defines Xt for all t ∈ [0,∞), with probability 1. (This can be proved
using the Strong Law of Large Numbers, see later in the course). We will also talk about
the process started from points other than 0; by the process started at i ∈ N, we mean the

process (X
T

(1)
i

+ t)t≥0 (conditionally given T
(1)
i <∞, which occurs with probability 1). In

any case, we will denote the fist jump time of X by J1.

(a) Calculate all non-negative solutions ξ of ξQ = 0.

(b) For i ∈ N, let H
(1)
i = Hi = inf{t > J1 : Xt = i} denote the first passage time to

i. Calculate mi = Ei(Hi) and define ξi = 1/(miλi). Note that ξ is a probability
distribution. What would ξ represent in the non-explosive case and what is different
here?

Hint: what is the relationship between T
(1)
∞ and H0?

(c) Prove the following as far as possible. Given X0 = i, the passage time Hj to j > i,
has density function

f
(1)
ij = fij = gλi ∗ · · · ∗ gλj−1

,

where gλ denotes the density of Exp(λ) and ∗ denotes convolution (g ∗ h)(x) =∫ x
0 g(y)h(x − y)dy. Furthermore, if j > i then, given X0 = j, the density of Hi is a

quantity fji satisfying fij ∗ fji = f , where f = fii = f00 is the density of T∞ (which
you may assume to exist, as well as fji). The densities of successive passage times

H
(m+1)
j , m ≥ 1, are then f

(m+1)
ij = fij ∗ f∗(m) where ·∗(m) denotes mth convolution

power, i.e. f∗(1) = f and f∗(m+1) = f ∗ f∗(m).

Hint: remember that the density of the sum of continuous random variables is the
convolution product of their densities.

(d) Show that for all t ≥ 0 and i, j ∈ N

pij(t) := Pi(Xt = j) =
1

λj

∑
m≥1

f
(m)
i,j+1(t).

(e) Show that ξP (t) = ξ for all t ≥ 0.


