
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2020

Problem Sheet Zero

1. The moment generating function of a (real valued) random variable
X is defined by mX(t) = E

[

etX
]

, assuming this expectation exists.
Suppose that X is a normally distributed random variable with zero
mean and variance σ2, so its probability density function is

p(x) =
1

√
2π σ2

e−x2/2σ2

.

Show that in this case mX(t) = eσ
2t2/2. Hence deduce that the odd

moments of X are all zero, i.e., for n = 0, 1, 2, . . .

E
[

X2n+1
]

= 0,

and the even moments are given by

E
[

X2n
]

=
(2n)!

2n n!
σ2n = 1 · 3 · · · (2n− 3)(2n− 1)σ2n,

for n = 0, 1, 2, . . . . In particular, note for future reference that

E
[

X4
]

= 3σ4.

2. A die has six faces labelled 1 to 6 and when rolled the probability that
any given face appears is 1

6 . Find

(a) The expected value of the die;

(b) The expected value of the die if only an odd number appears;

(c) The expected value of the die if only an even number appears.

Give the probability that an odd number appears and the probability
that an even number appears. Show that the expected value of the
die, with no conditions, is the same thing as









probability
of rolling
an even
number









×









the expected
value if an

even number
is rolled









+









probability
of rolling
an odd
number









×









the expected
value if an
odd number
is rolled









.

This is a particular case of a general law, called the tower law or the
law of iterated expectations.
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3. For t > 0, let

p(y;x, t) =
1

√
2π t

e−(x−y)2/2t.

This can be interpreted as the probability density function for a normal
random variable Y which has mean x and variance t. Show, by direct
calculation, that p(y;x, t) also satisfies the heat equation

∂p

∂t
= 1

2

∂2p

∂x2
, for t > 0, x ∈ R.

Hence deduce that

u(x, t) = E
[

f(y)
]

=
1

√
2π t

∫

∞

−∞

f(y)e−(x−y)2/2t dy

satisfies the heat equation

∂u

∂t
= 1

2

∂2u

∂x2
, for t > 0, x ∈ R,

provided the integral converges absolutely. [Hint: you can assume
that the absolute convergence means you can swap the order of partial
differentiation and integration.]

Assuming that the integral converges absolutely and f is continuous
at all points in R, show that

lim
t→0+

u(x, t) = lim
t→0+

1
√
2π t

∫

∞

−∞

f(y)e−(x−y)2/2t dy = f(x)

for each x ∈ R. [Hint: change variables to s = (y−x)/
√
t and then you

may assume that the absolute convergence allows you to interchange
the order of limit and integration.]

4. Show that if u(x, t) is a solution of the heat equation

∂u

∂t
= 1

2

∂2u

∂x2
,

for t > 0 and all x ∈ R, then so too is u(−x, t). Write down solutions
u1 and u2 of the heat equation, in terms of u (and for t > 0 and x ≥ 0),
which satisfy

(a) u1(0, t) = 0, (b)
∂u2
∂x

(0, t) = 0.

5. The Black-Scholes equation (with no dividend yields) is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0
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for t < T and S > 0, where r and σ > 0 are constants (the interest
rate and volatility). Note that we solve this equation backwards in
time, from T (the expiry time, in the future) to the present.

By assuming a separable solution of the form V (S, t) = F (S)G(t), find
solutions which satisfy the terminal condition V (S, T ) = Sm, S > 0,
where m is a constant.

[Hint: start with the terminal condition before worrying about the
differential equation.]
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