
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2020

Problem Sheet Three

Your grade will be determined from the best five answers to the first seven
questions.

1. Assume a zero interest rate, r = 0, in this problem (to avoid problems
with the time-value of cash payments). Let 0 = t0 < t1 < t2 < · · · <
tn−1 < tn = t be a partition of the interval [0, t]. Let Su > 0 be the
price of a share at time u ∈ [0, t], ∆u be a number of shares at time u
and abbreviate Stk = Sk, ∆tk = ∆k. At time t0 = 0 we buy ∆0 shares,
at price S0, and hold these until time t1. At time t1 we buy (or sell)
enough shares, at price S1, so that we have ∆1 shares, which we hold
until time t2, at which point we buy (or sell) enough shares, at price
S2, so that we have ∆2 shares. We continue this process until time
tn−1, when we end up with ∆n−1 shares which we hold until tn = t at
which point we sell all shares we hold, at price Sn. Show that the cost
of this procedure is

−
n−1
∑

j=0

∆j (Sj+1 − Sj).

[Hint: at time step tk+1 the change from holding ∆k shares to holding
∆k+1 shares is equivalent to selling all the ∆k shares and then buying
back ∆k+1 shares, with both the trades being executed at share price
Sk+1.]

Show that, formally at least, in the limit |π| → 0 the cost becomes

Ct = −

∫ t

0

∆u dSu

where the integral is an Itô integral (with respect to Su) and hence
deduce that

dCt = −∆t dSt.

2. Show that if V (S, t) is a solution of the Black–Scholes equation (for
S > 0 and t < T ) then so too are:

(a) a V (S, t) with a ∈ R;

(b) V (bS, t) with b > 0;

(c) a V (bS, t) with a ∈ R, b > 0.
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3. A log-option is an option with the payoff function

Po(ST ) = log(ST /K),

where the “strike” is positive, K > 0. Find the Black–Scholes value
function for a European log-option. (Such options are not traded,
but they occur in the theory underlying the CBOE’s VIX (variance
index) which measures the S&P500 index’s variance, allowing futures
and options to be written on this variance.)

4. Find the Black–Scholes price function of a European digital call option,
i.e., an option whose payoff function is

f(ST ) = 1{ST≥K} =

{

0 if 0 < ST < K,

1 if ST ≥ K.

A European digital put option has the payoff f(ST ) = 1{ST<K}. Use a
no arbitrage argument to establish a digital put-call parity result and
hence find the Black–Scholes price function for a digital put.

5. Show that if V (S, t) is a sufficiently differentiable solution of the Black–
Scholes equation (for S > 0 and t < T ) then so too is

W (S, t) = S
∂V

∂S
(S, t).

By induction, conclude that if V (S, t) is sufficiently differentiable then
(

S
∂

∂S

)n

V (S, t), Sn ∂nV

∂Sn
(S, t), n = 2, 3, 4, . . .

are also solutions of the Black–Scholes equation.

6. Let Cbs(S, t;K,T, r, y, σ) denote the solution of a Black–Scholes call
value problem with strikeK, expiry date T , risk-free rate r, continuous
dividend yield y and volatility σ. Consider the Black–Scholes problem

∂V

∂t
+ 1

2
σ2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T

V (S, t) =
1

K2
max

(

S3 −K3, 0
)

, S > 0.

Show that

V (S, t) =
1

K2
Cbs(S

3, t;K3, T, r, ŷ, σ̂)

where ŷ = 3y − 2r − 3σ2 and σ̂ = 3σ.

[Hint: either write Ŝ = S3 and do a change of variables in the terminal
value problem or think about the payoff and risk-neutral process for
Ŝt = S3

t .]
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7. Show that if V (S, t) is a solution of the Black–Scholes equation (for
S > 0 and t < T ) and B > 0 then

W (S, t) =

(

S

B

)2α

V

(

B2

S
, t

)

,

where 2α = 1 − 2(r − y)/σ2
)

, is also a solution of the (same) Black–
Scholes equation.

[Hint: put ξ = B2/S and note that V (ξ, t) satisfies the Black–Scholes
equation in ξ > 0 and t < T .]

Optional questions

8. Let V (S, t) satisfy the Black–Scholes problem

∂V

∂t
+ 1

2
σ2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0 S > 0, t < T,

V (S, t) = Po(S), S > 0.

For some fixed reference price, S0 > 0, set the dimensionless variables
x = log(S/S0), τ = σ2(T − t) and v(x, τ) = V (S, t)/S0. Show that

∂v

∂τ
= 1

2

∂2v

∂x2
+ k1

∂v

∂x
− k2 v, x ∈ R, τ > 0,

v(x, 0) = p(x), x ∈ R,

(1)

where k1 and k2 are constants which you should find (in terms of r, y
and σ) and p(x) is a function which you should also find (in terms of
Po(S)).

Assuming that p(x) is a “reasonable” function1, it can be shown that
the solution of (1) is infinitely differentiable in x for τ > 0. Hence
deduce that

vn(x, τ) =
∂nv

∂xn
(x, τ), n = 1, 2, 3, . . .

are also solution of the partial differential equation in (1) for τ > 0.
Infer that if Po(S) is a “reasonable” function then

Vn(S, t) =
(

S
∂

∂S

)n

V (S, t), n = 1, 2, 3, . . .

1For example, if p(x) is integrable on every compact subset of R and there are constants

C > 0 and κ > 0 with | p(x) | < C eκx
2

for all x ensures that the solution

u(x, τ) =
1√
2πτ

∫
∞

−∞

p(ξ) e−(x−ξ)2/2τ dξ

is C∞ in x for 0 < τ < 1/2κ.
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are also solutions of the Black–Scholes partial differential equation for
t < T .

9. Show that if we put

v(x, τ) = eατ+βx u(x, τ),

in (1) then, for certain values of α and β, which you should determine,
we can reduce (1) to the heat equation problem

∂u

∂τ
= 1

2

∂2u

∂x2
, x ∈ R, τ > 0

u(x, 0) = q(x), x ∈ R.

(2)

Suppose that u(x, τ) is the solution to (2) and set û(x, τ) = u(2b−x, τ)
for some constant b. Show that û(x, τ) is also a solution of the heat
equation (but not necessarily the initial condition) in (2). Unwinding
the transformations that reduced the Black–Scholes equation to the
heat equation it is clear that u(x, τ) leads back to the solution of the
original Black–Scholes problem. Show that unwinding the transforma-
tions on û(x, τ) leads to the ‘reflected’ solution

V̂ (S, t) = S2α V
( B2

S
, t
)

,

where 2α = 1− 2(r − y)/σ2 and B2 > 0.

10. The covariation of two functions or processes, X and Y , on [0, t] is
defined to be

[X,Y ]t = lim
|π|→0

n−1
∑

k=0

(Xk+1 −Xk)(Yk+1 − Yk).

Show that if both X and Y have finite quadratic variation on [0, t]
then [X,Y ]t is finite and satisfies 2

∣

∣ [X,Y ]t
∣

∣ ≤ [X]t + [Y ]t.

Assuming [X]t and [Y ]t are finite, show that

(a) [X + Y ]t = [X]t + [Y ]t + 2 [X,Y ]t,

(b) [X,Y ]t =
1

4

(

[X + Y ]t − [X − Y ]t
)

.

(c) if X and Y are C1 functions on [0, t] then [X,Y ]t = 0.

11. Let (Wt)t≥0 and (Zt)t≥0 be two Brownian motions. They are correlated
with correlation ρ ∈ (−1, 1) if

(a) for all s, t ≥ 0, E
[

(Wt+s −Wt)(Zt+s − Zt)] = ρ s,
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(b) for all 0 ≤ p ≤ q ≤ s ≤ t, the pair (Wq − Wp) and (Zt − Zs)
are independent and the pair (Wt −Ws) and (Zq − Zp) are also
independent.

Show that in this case [W,Z]t = ρ t, in the sense that

E
[

[W,Z]t − ρ t
]

= 0 and E

[

(

[W,Z]t − ρ t
)2
]

= 0.

[Hint: first show that if X and Y are random variables with second
moments then |E[XY ] | ≤ 1

2

(

E[X2] + E[Y 2]
)

. ]

[Note that if we define a process by ft = f(Wt, Zt, t) where f(W,Z, t)
is C2,2,1, then (the differential version of) Itô’s lemma is

dft =
∂f

∂t
dt+

∂f

∂W
dWt +

∂f

∂Z
dZt

+ 1

2

∂2f

∂W 2
d[W ]t +

1

2

∂2f

∂Z2
d[Z]t +

∂2f

∂W∂Z
d[W,Z]t,

where all functions on the right-hand side are evaluated at (Wt, Zt, t).
The result derived above simplifies this expression.]
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