
B8.3 Week 2 summary 2019

As we saw, it is not possible to give a price for a call option without a model
for future changes in the stock price.

The simplest model for a random share price is the one-step binomial
model, in which the asset price is St at time t. At time T it can be either
ST = Su with probability p > 0 or ST = Sd < Su with probability 1−p > 0.
No arbitrage implies that

Sd < St e
r(T−t) < Su.

An option with payoff function f(ST ) at time T is written on this asset
so at expiry we have

VT = Vu = f(Su) with probability p

VT = Vd = f(Sd) with probability 1− p

The problem is to find the current value of the option Vt. There are at least
two ways to do this.
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Figure 1: Underlying asset price in a one-step binomial model

Delta hedging argument

At time t set up a portfolio Π long an option and short ∆t shares

Πt = Vt −∆t St,
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and hold this portfolio fixed until time T . Choose ∆t so that the portfolio
has the same value regardless of whether the up-state or the down-state
occurs, V d −∆t S

d = V u −∆t S
u. This gives

∆t =

(
V u − V d

Su − Sd

)
.

This portfolio is risk-free and so must grow at the risk-free rate, or there
would be an arbitrage opportunity. This implies that

(Vt −∆t St) e
r(T−t) = V u −∆t S

u = V d −∆t S
d

and when we solve for Vt we find that

Vt = e−r(T−t)
(
q V u + (1− q)V d

)
, 0 < q =

(
St e

r(T−t) − Sd

Su − Sd

)
< 1. (1)

Self-financing replication argument

At time t set up a portfolio Φ with φt shares and ψt bonds (bonds grow at
the risk-free rate)

Φt = φt St + ψt.

Hold this portfolio fixed and choose φt and ψt so that the portfolio has value
V u in the up-state and V d in the down-state

Φu = φt S
u + ψt e

r(T−t) = V u,

Φd = φt S
d + ψt e

r(T−t) = V d.

Solving for φt and ψt gives

φt =

(
V u − V d

Su − Sd

)
, ψt =

(Su V d − Sd V u

Su − Sd
)
e−r(T−t).

As this portfolio perfectly replicates the option payoff (and has no other
cash flows), its value at t must equal Vt. This leads back to (1). (Note
that Φ ≡ V , ψ ≡ Π and φ ≡ ∆; either argument amounts to a simple
rearrangement of the symbols in the other.)

In this version of the pricing argument we see that the price of the option
is simply the cost of setting up a self-financing portfolio that perfectly covers
the option writer’s liability at expiry T .

Interpretation

Note that:

1. no arbitrage on the share price implies that 0 < q < 1;
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2. our market model for the share price is complete in the sense that we
can replicate any payoff (i.e., solve one equation for ∆t in the delta-
hedging argument or two equations in two unknowns in the replication
argument).

3. The number of stocks we hold is ‘almost’ the derivative of the payoff
V with respect to the underlying S (except for discretization).

4. We have not assumed that the stock is being ‘fairly’ priced, but have
found the only price which is consistent with the market and does not
lead to arbitrage.

As 0 < q < 1 we can view it as a probability (of an up-jump), the so called
risk-neutral probability, and write (1) as

Vt = EQ[e−r(T−t) VT ] = e−r(T−t)
(
qV u + (1− q)V d

)
. (2)

The value of the option at time t is the expected value of option value at
expiry, T , under the risk-neutral Q measure, discounted back to the present
via the e−r(T−t) term.

Using the original probabilities p and 1−p (the P, or physical, measure)
we can define an expected growth rate, µ, for the share by

EP[ST ] = pSu + (1− p)Sd = St e
µ(T−t).

Under the Q measure used to price options in (1) we get

EQ[ST ] = q Su + (1− q)Sd = er(T−t) St,

so the expected value of the share price grows at the risk-free rate, under
the risk-neutral measure, even though the share is not risk-free.

Fundamental Theorem of Asset Pricing (simplest case)

There is a fairly general theorem guaranteeing the first equality in (1) holds.
The formal statement is this

Fundamental theorem of Asset Pricing

1. Assuming no arbitrage or transaction costs, and determin-
istic interest rates, there exists a probability measure Q
such that the price of a payoff XT at time t is given by
e−r(t−T )EQ[XT |Ft]. (Also, Q is equivalent to the real-world
probability measure in the sense of measures.)

2. The probability measure Q is unique if and only if all payoffs
are traded (or can be replicated from traded claims).

3



See Etheridge (2002), §1.5 and §1.6 for a proof in a general discrete time
and price model. Here we give a sketch of the proof over a single step, under
the assumption that we can trade a claim with any payoff.

Assume no arbitrage or transaction costs. As there are no transaction
costs, the prices of all avalable assets must be linear, that is, Π(aX + Y ) =
aΠ(X) + Π(Y ) for any payoffs X,Y and any constant a ∈ R. If we assume
there are finitely many possible outcomes, then a payoff X can be repre-
sented by a vector (x1, ..., xN ) in RN for some N (the number of outcomes).
Consequently, we can think of Π as a linear operator mapping RN → R.
From algebra, we know that such an operator can always be written as a
matrix, in particular,

Π(X) =
∑
i

πixi.

Considering the case when xi ≡ 1, so the payoff is constant, by no arbitrage
we have Π(1) = e−rt , which implies

∑
i πi = e−rt. Write πi = e−rtqi. As we

can trade a claim with payoff (0, .., 0, 1, 0, ...), then the price of this claim
equals e−rtqi and no arbitrage guarantees qi ≥ 0 and qi > 0 if this outcome
happens with nonzero probability.

In general though, this is an existence result of a mathematical fiction –
we do not usually expect Q to represent real-world probabilities of events.

More than one step

In a multi-step binomial model, we split the interval [t, T ] into n steps of
length δt = (T − t)/n, say

t0 = t, tm+1 = tm + δt, tn = T, for m = 1, 2, . . . n,

and build a binomial, or sometimes a binary, tree starting from St. It
common practice to set

Sωutm+1
= uSωtm , Sωdtm = dSωtm ,

where u > 1 and 0 < d < 1 are constants and, frequently, u × d = 1. Here
ω denotes the path to the current node on the tree, for example after two
steps ω ∈ {uu, ud, du, dd}. No-arbitrage in the share price tree requires

0 <

(
Sωtm e

rδt − Sωdtm+1

Sωutm+1
− Sωdtm+1

)
=

(
erδt − d
u− d

)
< 1.

Over each step the risk-neutral pricing formula gives

V ω
tm = e−rδt

(
q V ωu

tm+1
+ (1− q)V ωd

tm+1

)
, q =

(
erδt − d
u− d

)
, (3)
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Figure 2: A three-step binomial tree

which requires us to work backwards from tn = T , where we know the option
prices from its payoff. This is sometimes called dynamic programming.

The ∆-hedging parameter at each step becomes

∆ω
tm =

(
V ωu
tm+1

− V ωd
tm+1

Sωutm+1
− Sωdtm+1

)
and the replicating portfolio (at each step) is

φωtm =

(
V ωu
tm+1

− V ωd
tm+1

Sωutm+1
− Sωdtm+1

)
, ψωtm =

(
Sωutm+1

V ωd
tm+1

− Sωdtm+1
V ωu
tm+1

Sωutm+1
− Sωdtm+1

)
e−rδt.

Recall that at time tm and in state ω, φωtm is the number of shares we hold
and ψωtm is the amount of cash hold in order that we perfectly replicate the
option’s value in the two possible future states.

Self-financing replication

Let St be the value of a share and Bt be the value of a bond (i.e., cash ) at
time t. If at time t a portfolio has φt shares and ψt in cash then the value
of the portfolio is

Φt = φt St + ψtBt.
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Let
δSt = St+δt − St, δBt = Bt+δt −Bt, δΦt = Φt+δt − Φt

so, in general,

δΦt = φt δSt + ψt δBt

+ (St + δSt) δφt + (Bt + δBt) δψt

If it turns out that

(St + δSt) δφt + (Bt + δBt) δψt = 0,

then any money to buy δφt new shares at t+δ comes from selling δψt bonds
(i.e., borrowing the same amount of cash) and vice versa. If this is the case,
we call the portfolio self-financing over [t, t+ δt) and we find that

δΦt = φtδSt + ψtδBt, (4)

which is usually known as the self-financing equation.
The replication strategy given above is self-financing; over any interval

[tm, tm+1) both φωtm and ψωtm are fixed, so both δφωtm = 0 and δψωtm = 0. By
construction, the replicating portfolio set up at tm in state ω is guaranteed
at time tm+1 to have the value of V ωu

tm+1
in the up-state (ωu) and V ωd

tm+1
in

the down-state (ωd). So, although the number of shares and the amount of

cash changes from (φωtm , ψ
ω
tm) to (φ

ω u/d
tm , ψ

ω u/d
tm ) as we go from t−m+1 to t+m+1,

the value of the replicating portfolio does not; as we re-adjust the portfolio
at tm+1, we sell however many shares are necessary to buy the required
number of bonds and vice versa. This establishes that under all possible
circumstances in the binomial model, the (φ, ψ) strategy both replicates the
option’s payoff and is self-financing.

American options

At each node on the tree the option holder has two choices:

• hold the option until the next step, in which case its values is given
by (3); or

• exercise the option at this step and receive the payoff.

A rational investor will choose the one which makes the option most valuable
to them and so if Pωtm represents the payoff at the current node then

V ω
tm = max

(
e−rδt

(
q V ωu

tm+1
+ (1− q)V ωd

tm+1

)
, Pωtm

)
(5)

6



St0

Vt0

Su

t1

V u

t1

Sd

t1

V d

t1

Suu

t2

V uu

t2

Sud

t2

V ud

t2

Sdu

t2

V du

t2

Sdd

t2

V dd

t2

Suuu

t3

V uuu

t3

Suud

t3

V uud

t3

Sudu

t3

V udu

t3

Sudd

t3

V udd

t3

Sduu

t3

V duu

t3

Sdud

t3

V dud

t3

Sddu

t3

Sddu

t3

Sddd

t3

V ddd

t3

t0 = t t1 t2 t3 = T

Figure 3: A three-step binary tree: binary trees are sometimes necessary to
price path dependent options, such as options which depend on the share’s
average or maximum over the life of the option

7


