B8.3 Week 3 Summary 2020

Brownian motion

A stochastic process is a sequence of random variables indexed by a param-
eter, for example, (W});>0. For each fixed t > 0, W; is a random variable.

A process (W;)¢>0 is a Brownian motion if (and only if)

1. Vs>0,t>0, (WHS — Wt) is normally distributed with zero mean
and variance s,

E[Wirs—Wi] =0, E[(Wips —Wy)?] =s,
2. if 0 <p<q<s<tthen (W, —W,) and (W; — W) are independent,
3. the map t — W; is continuous, and

4. Wy = 0 (this is really a convention, it saves some writing).

It is not obvious that such a thing exists, but there are a number of ways of
constructing it (see Etheridge §3.1 and §3.2, for example, or the most recent
B8.2 lectures!).

Note that if (W}):>0 is a Brownian motion then so too are:
1. W, = Wiit19) — Wi, for any constant ¢g > 0;

2. Wy = cWiy/c2y for any constant ¢ > 0.

Brownian motion is almost surely not differentiable

We show that with probability one a Brownian motion is not differentiable.
If Brownian motion were differentiable at the point ¢y > 0 then the limit

. Wititg) — Wi
lim —— = —
t—0 t t—0 t

would exist, so it is enough to show that with probability one the second
limit does exist. Let A, and B, be defined by

14% 1 W, 1
A, = —| t‘>n:f0rsomet€<0,—} , B, = —’ t‘>n:att:— .
t n4 t n

Clearly we have B, C A,, and so

prob(4,) > prob(B,) = prob ’Wl/n4| >n
- 1/n4

. 1
= prob (|n2W1/n4| > >
n
~ 1
= prob<|W1\ > > .
n

1



As n — oo we have prob(|W;| > 1/n) — 1. Therefore lim,, o prob(4,) = 1
which means that in this limit there is (with probability one) always some
0 < t < 1/n* with |W;|/t > n. This shows that (with probability one) the
limit which defines the derivative of a Brownian motion can not exist.

Quadratic variation

Let 7 be a partition of [0, ],
to=0<ti <to<---<t, =t,

and let

= t —1tr).
|| o?;?fn( k1 — th)

We wish to measure the variability of our Brownian motion. This is
most easily done by using the ‘quadratic variation’®, which is defined for a
random process X; by:

n—1

[X]t = ]1|J>7;\1_1>I(I)1 (th+1 - th)Q‘
k=0

Importantly, the limit here should be taken in probability, in the sense that

n—1

]P’“[X]t -3 Xy, - th)2) > e] S 0ase— 0.
k=0

It may or may not exist, depending on X.

1. If X is continuously differentiable on [0, ¢] then [X]; = 0.

As Xy, ., — Xt = X'(&) (thg1 — tr) for some & € [ty, ty11] we have

n—1 n—1
Z(thﬂ - th)Q = Z X' (&) (thar — ttk)2
k=0 k=0
n—1
< w0 X () (ks — t)
k=0
and as || — 0
n—1 t
ZX/(fk)Z(tkH —tg) — / X'(u)? du < oo,
k=0 0

using Riemann’s definition of an integral (which is equivalent to Lebesgue’s
definition if the function is continuous, as it is in this case).

'Other common notation for quadratic variation include [X s, (X)¢, [X, X ]: and
<X7X>t



2. If X is an increasing continuous function, then [X]; = 0.

Consider a partition so that [X;,  , — X | < e for all k. As X is
continuous and increasing, such a partition exists and can be taken to

have at most [@—‘ intervals. However, this means that

€

n—1

X1 — X
Z ’th+1 - th’2 < [u—‘ 62 — 0.
k=0

3. The quadratic variation of a Brownian motion is defined as
n—1

(W] =P-lim » (Wy,,, — W,)>
k

|7|—0

Let 6W, = Wtk+1 - Wtk and 0ty = tp1 — tx

E[g((cswm —ote)] = S(E[(éwﬁ] ~ o),
k=0 k=0

which vanishes for any finite n > 0 since E[(§W})?] = 6t1. It therefore
also vanishes in the limit n — oo.

Next, consider

n—1

e[ (3 m—m)
n—1ln—1
= > D E[((0W;)* — 6t5) (6Wi)* — bty
T
=Y E[((6Wi)? - otr)°] + ZE [(6W;)% — S| E[(6W5)? — 6ty
k=0 Jj#k

- nzl E[((6W)? — 1)’

kO

—Z [(OW)*] — 26t E[(W2)] + (5t1,)%)

n— 1
=2 (oty)?
k=0
< 27| pC) 0tk = 2|t

where we use the independence of §W; and W}, if j # k to get from
the second to the third line.



From this we see that

n—1

E[(t - Wtk)2>2} 0.
k

so by Markov’s inequality, for any € > 0,

_ 2
P(|t_7§(wtk+1_Wtk)2| > e) < EKt X (W, — Wt’“)2> ]
k

so the quadratic variation of W is [W]; = t.

It follows that Brownian motion is almost surely not continuously
differentiable in t.

The It6 integral
The definition of the It6 integral of a function against a Brownian motion is

n—1

t
/0 FWoyu) dWy = lim >~ f(Wi, te) (W, — Wey).
k=0

|7|—=0 “—

For fixed ¢ this integral is a random variable and as ¢ varies it is a stochastic
process. The sum converges to the integral in an L? sense (or in probability,
see, e.g., Etheridge pp 78-85).

Using the tower law, and writing 6Wj, = Wy, ., — W, , we find that

E[Sf(%J@W@ - E[ZIE [F (Wi, ti)oW5] |
k=0 k=0
- E{nzl f(Wk,tk)Etk[éwk]] ~ 0.
k=0

This establishes that if the It6 integral exists (and f is sufficiently ‘nice’)
then

E[/th(wu,u)dwu} —0.

The same sort of argument shows that for 0 < s <t

B [ sovawan,] = [ aw,



If f is a reasonable function of ¢ alone then

E| (nz:jl F(t) W) |

E[ Z F(t5) F(te) 5Wk5W}
jk 0

E—ZE;C 2 (5W%) ] [ZEk
) ]<k

E_Zf (t)? B[ (6W5) ] [Zf
“ k=0 i<k

n—1
E| " () Er [(6Wi)?

n—1
> F(tr)?dts
k=0

and in the limit |7| — 0 we obtain Ité’s isometry,

Var[/otf(u) qu} - /Otf(u)2du

As the integral is simply the limit of a sum of normally distributed random
variables, it is itself normally distributed (proof omitted).

If f depends on W; the same sort of argument shows that

var [/Ot F(Wa,u) dwu} - /OtE[f(Wu,u)2] du,

F(t)oW;0W; ] |

F(t)OWEx [ oW ] |

provided the right-hand side exists. In general, however, the integral itself
t

is not normally distributed. For example, 2 / Wy dW,, = Wf — t, which
0

has a x? distribution.

It6’s lemma
If f(z,7) is C*! then
fWi,t) — £(0,0) =

‘of
0 87

t
B,
(Wu,u)du—l—/o a—i(wu,u)qu+% i 7(Wu,u)d[W]u.

Since [W], = u we can replace d[W], by du, and in practice we always do.
Consider the simpler case where f is independent of 7 and write

fFWy) =

n—1

F0) =D (f(Wigr) — F(W))

k=0

5



over some partition, 7, of [0,¢]. Taylor’s theorem (with remainders) shows
that for each k

FWiesr) = F(Wi) = f'(Wi)dWi + 3. (Vi) (Wi)?
for some Vi between Wy and Wi, where 6Wj = Wy 1 — Wy. Thus

n—1 n—1
FW) = £(0) =D F(Wi)6Wi + 3 > (Vi) (6W5)*.
k=0 k=0

As we refine the partition

n—1
i S /(W)W — / " pow.) aw,
0

0
Im=0320

For the second sum, it can be shown that

n—1 t
lim > " (Vi) (6W3)? — /0 (W) dW]

|7|—0 P

establishing that
son) = 10 = [ Fovawe+ g [ 50 aw.

It6’s lemma in practice

In practice, we usually write (1) in differential form rather than an integral
form. If f(W,t) is C*! and we define f; = f(Wy,t) the differential form of

It0’s lemma is

| 0%f

of
+ 2 3w2

dfy = (af(Wta t) oW

= (Ws, )) dt + -

(Wi, t) dWr.
This amounts to doing a regular Taylor series expansion of f(W,t) then
pretending that dW? = dt (and ignoring terms of higher order than dt).

To solve the stochastic differential equation

dS

= pdt +odW; (2)
EA

we can proceed as follows. If f(W,t) = e®W+b then all its partial derivatives
are multiples of the function, so it makes sense to try

St — SO eaWtert

This gives
dS; = (bS; + 2 a® S)) dt + a S, dW,



or

— = (b+1a?)dt + adW,.

If we set a = o and b=y — 3 0% we recover (2), i.e., the solution of (2) is

S, = Sgexp<(,u— %UQ)t—i—O'Wt).
The process S; is often called geometric Brownian motion. Note that the
sign of Sy is determined by the sign of Sj.
Ito’s lemma for solutions of SDESs

Suppose that X; is a solution of
t t
X — Xo= / w( Xy, u) du +/ o(Xy,u)dW,,
0 0

f(x,t) is a C%! function and we set f; = f(X¢,t). Then

t o 2
o= [ (B + oG5 00 ) dut [ St ax,

The proof amounts to showing the quadratic variation [ X |; is given by

[ X ] :/0 o (Xy,u)? du.

In differential notation, which is how this result is normally used, if
ClXt = ,U,(Xt, t) dt + O'(Xt, t) th (3)
and f; = f(Xy,t) then

2
dft (Z{(Xta )+ %U(th) O é(Xt, )) dt + gi(Xt’t) dXt (4)

This can be obtained from a Taylor series expansion of f(z,t) and pretending
that dX? = o(Xy,t)? dt.
The Feynman—Kac formula
Suppose that f(z,t) satisfies the terminal value problem
af o f of
0

1 - =
t+20(:c,t)82+u( )850 0, t<T, z€R, )

f(z,T)=F(z), zeR
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Let X; satisfy the stochastic differential equation

dXt = /L(Xt, t) dt + O'(Xt, t) th

Then
fla,t) = B [F(X7) | Xy = ] (6)
To see this, note that It6’s lemma implies that
T af
f(Xp, T) = f(X,t) + o(Xs,s) %(XS, s) dWs
t
Trof af 1 5 0% f
+ /t (50(0) + (X ) 5 (X 8) + 30Xy 2 5 5(Xs,5)) ds

By assumption, the integral on the second line vanishes and when we take
expectations the integral on the first line also vanishes. Thus

f(Xta t) = ]E’t[f(XT’ T) ]
and conditioning on X; = x gives

fla,t) = B[ f(Xp, T) | Xy = ]



