
B8.3 Week 3 Summary 2020

Brownian motion

A stochastic process is a sequence of random variables indexed by a param-
eter, for example, (Wt)t≥0. For each fixed t ≥ 0, Wt is a random variable.

A process (Wt)t≥0 is a Brownian motion if (and only if)

1. ∀ s ≥ 0, t ≥ 0,
(

Wt+s − Wt

)

is normally distributed with zero mean
and variance s,

E[Wt+s −Wt ] = 0, E
[

(Wt+s −Wt)
2
]

= s,

2. if 0 ≤ p ≤ q ≤ s ≤ t then (Wq −Wp) and (Wt −Ws) are independent,

3. the map t 7→ Wt is continuous, and

4. W0 = 0 (this is really a convention, it saves some writing).

It is not obvious that such a thing exists, but there are a number of ways of
constructing it (see Etheridge §3.1 and §3.2, for example, or the most recent
B8.2 lectures!).

Note that if (Wt)t≥0 is a Brownian motion then so too are:

1. Ŵt = W(t+t0) −Wt0 for any constant t0 ≥ 0;

2. W̃t = cW(t/c2) for any constant c > 0.

Brownian motion is almost surely not differentiable

We show that with probability one a Brownian motion is not differentiable.
If Brownian motion were differentiable at the point t0 ≥ 0 then the limit

lim
t→0

W(t+t0) −Wt0

t
= lim

t→0

Ŵt

t

would exist, so it is enough to show that with probability one the second
limit does exist. Let An and Bn be defined by

An =

{

|Ŵt|

t
> n : for some t ∈

(

0,
1

n4

]

}

, Bn =

{

|Ŵt|

t
> n : at t =

1

n4

}

.

Clearly we have Bn ⊆ An and so

prob(An) ≥ prob(Bn) = prob

(

|Ŵ1/n4 |

1/n4
> n

)

= prob

(

|n2 Ŵ1/n4 | >
1

n

)

= prob

(

|W̃1| >
1

n

)

.
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As n → ∞ we have prob(|W̃1| > 1/n) → 1. Therefore limn→∞ prob(An) = 1
which means that in this limit there is (with probability one) always some
0 < t ≤ 1/n4 with |Ŵt|/t > n. This shows that (with probability one) the
limit which defines the derivative of a Brownian motion can not exist.

Quadratic variation

Let π be a partition of [0, t],

t0 = 0 < t1 < t2 < · · · < tn = t,

and let
|π| = max

0≤k<n
(tk+1 − tk).

We wish to measure the variability of our Brownian motion. This is
most easily done by using the ‘quadratic variation’1, which is defined for a
random process Xt by:

[X ]t = P- lim
|π|→0

n−1
∑

k=0

(Xtk+1
−Xtk)

2.

Importantly, the limit here should be taken in probability, in the sense that

P

[

∣

∣

∣
[X]t −

n−1
∑

k=0

(Xtk+1
−Xtk)

2
∣

∣

∣
> ǫ

]

→ 0 as ǫ → 0.

It may or may not exist, depending on X.

1. If X is continuously differentiable on [0, t] then [X]t = 0.

As Xtk+1
−Xtk = X ′(ξk)(tk+1 − tk) for some ξk ∈ [tk, tk+1] we have

n−1
∑

k=0

(Xtk+1
−Xtk)

2 =
n−1
∑

k=0

X ′(ξk)
2(tk+1 − ttk)

2

≤ |π|
n−1
∑

k=0

X ′(ξk)
2(tk+1 − tk)

and as |π| → 0

n−1
∑

k=0

X ′(ξk)
2(tk+1 − tk) →

∫ t

0
X ′(u)2 du < ∞,

using Riemann’s definition of an integral (which is equivalent to Lebesgue’s
definition if the function is continuous, as it is in this case).

1Other common notation for quadratic variation include [X ]t, 〈X〉t, [X,X ]t and
〈X,X〉t
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2. If X is an increasing continuous function, then [X]t = 0.

Consider a partition so that |Xtk+1
− Xtk | < ǫ for all k. As X is

continuous and increasing, such a partition exists and can be taken to

have at most
⌈

XT−X0

ǫ

⌉

intervals. However, this means that

n−1
∑

k=0

|Xtk+1
−Xtk |

2 ≤
⌈XT −X0

ǫ

⌉

ǫ2 → 0.

3. The quadratic variation of a Brownian motion is defined as

[W ]t = P- lim
|π|→0

n−1
∑

k

(Wtk+1
−Wtk)

2.

Let δWk = Wtk+1
−Wtk and δtk = tk+1 − tk

E

[

n−1
∑

k=0

(

(δWk)
2 − δtk

)]

=
n−1
∑

k=0

(

E[(δWk)
2]− δtk

)

,

which vanishes for any finite n > 0 since E[(δWk)
2] = δtk. It therefore

also vanishes in the limit n → ∞.

Next, consider

E

[ (

n−1
∑

k=0

(

(δWk)
2 − δtk

)

)2 ]

=
n−1
∑

j=0

n−1
∑

k=0

E
[(

(δWj)
2 − δtj

)(

(δWk)
2 − δtk

)]

=
n−1
∑

k=0

E
[(

(δWk)
2 − δtk

)2]
+

n−1
∑

j 6=k

E
[

(δWj)
2 − δtj

]

E
[

(δWk)
2 − δtk

]

=
n−1
∑

k=0

E
[(

(δWk)
2 − δtk

)2]

=

n−1
∑

k=0

(

E[(δWk)
4]− 2δtk E[(δW

2
k )] + (δtk)

2
)

= 2

n−1
∑

k=0

(δtk)
2

≤ 2 |π|
∑n−1

k=0 δtk = 2 |π| t,

where we use the independence of δWj and δWk if j 6= k to get from
the second to the third line.

3



From this we see that

E

[(

t−
n−1
∑

k

(Wtk+1
−Wtk)

2
)2]

→ 0.

so by Markov’s inequality, for any ǫ > 0,

P

(

|t−
n−1
∑

k

(Wtk+1
−Wtk)

2| > ǫ
)

≤
E

[(

t−
∑n−1

k (Wtk+1
−Wtk)

2
)2]

ǫ2
→ 0,

so the quadratic variation of W is [W ]t = t.

It follows that Brownian motion is almost surely not continuously
differentiable in t.

The Itô integral

The definition of the Itô integral of a function against a Brownian motion is

∫ t

0
f(Wu, u) dWu = lim

|π|→0

n−1
∑

k=0

f(Wk, tk)(Wtk+1
−Wtk).

For fixed t this integral is a random variable and as t varies it is a stochastic
process. The sum converges to the integral in an L2 sense (or in probability,
see, e.g., Etheridge pp 78–85).

Using the tower law, and writing δWk = Wtk+1
−Wtk , we find that

E

[

n−1
∑

k=0

f(Wk, tk)δWk

]

= E

[

n−1
∑

k=0

Etk

[

f(Wk, tk)δWk

]

]

= E

[

n−1
∑

k=0

f(Wk, tk)Etk [δWk]
]

= 0.

This establishes that if the Itô integral exists (and f is sufficiently ‘nice’)
then

E

[

∫ t

0
f(Wu, u) dWu

]

= 0.

The same sort of argument shows that for 0 ≤ s < t

Es

[

∫ t

0
f(Wu, u) dWu

]

=

∫ s

0
f(Wu, u) dWu.
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If f is a reasonable function of t alone then

E

[ (

n−1
∑

k=0

f(tk) δWk

)2 ]

= E

[

n−1
∑

j,k=0

f(tj) f(tk) δWk δWj

]

= E

[

n−1
∑

k=0

Ek

[

f(tk)
2
(

δWk

)2 ]
]

+ 2E
[

n−1
∑

j<k

Ek

[

f(tj)f(tk)δWjδWk

]

]

= E

[

n−1
∑

k=0

f(tk)
2
Ek

[ (

δWk

)2 ]
]

+ 2E
[

n−1
∑

j<k

f(tj)f(tk)δWjEk

[

δWk

]

]

= E

[

n−1
∑

k=0

f(tk)
2
Etk [(δWk)

2]
]

=

n−1
∑

k=0

f(tk)
2δtk

and in the limit |π| → 0 we obtain Itô’s isometry,

var
[

∫ t

0
f(u) dWu

]

=

∫ t

0
f(u)2 du.

As the integral is simply the limit of a sum of normally distributed random
variables, it is itself normally distributed (proof omitted).

If f depends on Wt the same sort of argument shows that

var
[

∫ t

0
f(Wu, u) dWu

]

=

∫ t

0
E
[

f(Wu, u)
2
]

du,

provided the right-hand side exists. In general, however, the integral itself

is not normally distributed. For example, 2

∫ t

0
Wu dWu = W 2

t − t, which

has a χ2 distribution.

Itô’s lemma

If f(x, τ) is C2,1 then

f(Wt, t)− f(0, 0) =

∫ t

0

∂f

∂τ
(Wu, u) du+

∫ t

0

∂f

∂x
(wu, u) dWu + 1

2

∫ t

0

∂2f

∂x2
(Wu, u) d[W ]u.

(1)
Since [W ]u = u we can replace d[W ]u by du, and in practice we always do.

Consider the simpler case where f is independent of τ and write

f(Wt)− f(0) =
n−1
∑

k=0

(

f(Wk+1)− f(Wk)
)

5



over some partition, π, of [0, t]. Taylor’s theorem (with remainders) shows
that for each k

f(Wk+1)− f(Wk) = f ′(Wk)δWk +
1
2f

′′(Vk)(δWk)
2

for some Vk between Wk and Wk+1, where δWk = Wk+1 −Wk. Thus

f(Wt)− f(0) =

n−1
∑

k=0

f ′(Wk)δWk +
1
2

n−1
∑

k=0

f ′′(Vk)(δWk)
2.

As we refine the partition

lim
|π|→0

n−1
∑

k=0

f ′(Wk)δWk →

∫ t

0
f ′(Wu) dWu.

For the second sum, it can be shown that

lim
|π|→0

n−1
∑

k=0

f ′′(Vk)(δWk)
2 →

∫ t

0
f ′′(Wu) d[W ]u,

establishing that

f(Wt)− f(0) =

∫ t

0
f ′(Wu) dWu + 1

2

∫ t

0
f ′′(Wu) d[W ]u.

Itô’s lemma in practice

In practice, we usually write (1) in differential form rather than an integral
form. If f(W, t) is C2,1 and we define ft = f(Wt, t) the differential form of
Itô’s lemma is

dft =

(

∂f

∂t
(Wt, t) +

1
2

∂2f

∂W 2
(Wt, t)

)

dt+
∂f

∂W
(Wt, t) dWt.

This amounts to doing a regular Taylor series expansion of f(W, t) then
pretending that dW 2

t = dt (and ignoring terms of higher order than dt).
To solve the stochastic differential equation

dSt

St
= µdt+ σ dWt (2)

we can proceed as follows. If f(W, t) = eaW+bt then all its partial derivatives
are multiples of the function, so it makes sense to try

St = S0 e
aWt+bt.

This gives
dSt = (b St +

1
2 a

2 St) dt+ aSt dWt
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or
dSt

St
= (b+ 1

2 a
2) dt+ a dWt.

If we set a = σ and b = µ− 1
2 σ

2 we recover (2), i.e., the solution of (2) is

St = S0 exp
(

(µ− 1
2 σ

2) t+ σWt

)

.

The process St is often called geometric Brownian motion. Note that the
sign of St is determined by the sign of S0.

Itô’s lemma for solutions of SDEs

Suppose that Xt is a solution of

Xt −X0 =

∫ t

0
µ(Xu, u) du+

∫ t

0
σ(Xu, u) dWu,

f(x, t) is a C2,1 function and we set ft = f(Xt, t). Then

ft−f0 =

∫ t

0

(

∂f

∂t
(Xu, u) +

1
2σ(Xu, u)

2∂
2f

∂x2
(Xu, u)

)

du+

∫ t

0

∂f

∂x
(Xu, u) dXu

The proof amounts to showing the quadratic variation [X ]t is given by

[X ]t =

∫ t

0
σ(Xu, u)

2 du.

In differential notation, which is how this result is normally used, if

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt (3)

and ft = f(Xt, t) then

dft =

(

∂f

∂t
(Xt, t) +

1
2σ(Xt, t)

2∂
2f

∂x2
(Xt, t)

)

dt+
∂f

∂x
(Xt, t) dXt. (4)

This can be obtained from a Taylor series expansion of f(x, t) and pretending

that dX2
t = σ(Xt, t)

2 dt.

The Feynman–Kac formula

Suppose that f(x, t) satisfies the terminal value problem

∂f

∂t
+ 1

2σ(x, t)
2 ∂

2f

∂x2
+ µ(x, t)

∂f

∂x
= 0, t < T, x ∈ R,

f(x, T ) = F (x), x ∈ R.

(5)
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Let Xt satisfy the stochastic differential equation

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt

Then
f(x, t) = Et

[

F (XT ) |Xt = x
]

(6)

To see this, note that Itô’s lemma implies that

f(XT , T ) = f(Xt, t) +

∫ T

t
σ(Xs, s)

∂f

∂x
(Xs, s) dWs

+

∫ T

t

( ∂f

∂t
(Xs, s) + µ(Xs, s)

∂f

∂x
(Xs, s) +

1
2σ(Xs, s)

2 ∂
2f

∂x2
(Xs, s)

)

ds

By assumption, the integral on the second line vanishes and when we take
expectations the integral on the first line also vanishes. Thus

f(Xt, t) = Et[ f(XT , T ) ]

and conditioning on Xt = x gives

f(x, t) = Et[ f(XT , T ) |Xt = x ]
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