
B8.3 Week 4 summary 2020

The Black–Scholes model

We will consider a slightly generalized version of the classic Black–Scholes
model. Over each infinitesimal period [t, t + dt) the share pays y St dt in
dividends, where for our purposes y is a constant known as the continuous
dividend yield. This is a poor but widely used model for dividend paying
shares.

With reinvestment of dividends, one share at time zero grows to eyt

shares at time t and the total value at time t is pt = eyt St. If we assume
that St evolves as

dSt
St

= (µ− y) dt+ σ dWt, (1)

where µ is known as the drift, y is the continuous dividend yield and σ > 0
is the volatility, then Itô’s lemma shows that

dpt
pt

= µdt+ σ dWt.

If we hold the shares and reinvest the dividends to buy more shares then the
value of the holding at time t is pt and for this reason we write the evolution
of St as (1), which is equivalent to writing

St = S0 exp
(
(µ− y − 1

2σ
2) t+ σWt

)
.

For fixed T ≥ 0 the distribution of ST is given by

ST = S0 exp
(
(µ− y − 1

2σ
2)T +

√
σ2 T Z

)
, Z ∼ N(0, 1).

Delta hedging analysis

Assume an option’s payoff is give by VT = Po(ST ) and its price Vt = V (St, t).
Set up a portfolio of one option and −∆t shares, so at t its market price at
time t is

Mt = Vt −∆t St.

Let Πt be the cumulative cost of executing this strategy, so

dΠt = dVt −∆t dSt − y∆t St dt,

the final term represents payment of the dividend yield to the owner of the
shares. Itô’s lemma applied to Vt = V (St, t) gives

dΠt =

(
∂V

∂t
(St, t) +

1
2σ

2 S2
t

∂2V

∂S2
(St, t)− y∆t St

)

dt+

(
∂V

∂S
(St, t)−∆t

)

dSt,
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which we make (instantaneously) risk-free by setting

∆t =
∂V

∂S
(St, t).

A risk-free portfolio must grow at the risk-free rate, or there would be an
arbitrage opportunity, so dΠt = rMt dt, i.e.,
(
∂V

∂t
(St, t) +

1
2σ

2 S2
t

∂2V

∂S2
(St, t)− y St

∂V

∂S
(St, t)

)

= r

(

Vt − St
∂V

∂S
(St, t)

)

,

which gives the Black-Scholes equation

∂V

∂t
(St, t) +

1
2σ

2 S2
t

∂2V

∂S2
(St, t)− y St

∂V

∂S
(St, t)

︸ ︷︷ ︸

+ r St
∂V

∂S
(St, t)− r V (St, t)

︸ ︷︷ ︸

= 0,

(
rate of return on risk-free

∆-hedged portfolio

)

−





rate of return on
portfolio’s value

in bank



 = 0.

This holds for all attainable St which, if S0 > 0, is any St > 0. Thus we
obtain the Black-Scholes equation,

∂V

∂t
(S, t) + 1

2σ
2 S2 ∂

2V

∂S2
(S, t) + (r − y)S

∂V

∂S
(S, t)− r V (S, t) = 0, (2)

for S > 0 and t < T . At expiry VT = V (ST , T ) = Po(ST ) implies that

V (S, T ) = Po(S), S > 0. (3)

Self-financing replication analysis

Here we try to replicate the option’s payoff using a portfolio of shares and
bonds. The bond price, Bt, evolves as

dBt

Bt
= r dt. (4)

Let φt be the number of shares at t and ψt be the number of bonds. The
market value of the portfolio at t is

Φt = φt St + ψtBt (5)

and the change in the portfolio value is

dΦt = φt dSt + ψt dBt + (St + dSt) dφt + (Bt + dBt) dψt + y φt St dt,

the final term coming from dividends. If (St+ dSt) dφt+(Bt+ dBt) dψt = 0
we say the portfolio is self-financing; to buy more shares we have to sell
bonds and vice-versa. The self-financing condition is usually written as

dΦt = φt dSt + ψt dBt + y φt St dt.
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In our case it reduces to

dΦt = φt dSt + ψt r Bt dt+ y φt St dt. (6)

If we write Φt = Φ(St, t) and apply Itô’s lemma we find

dΦt =

(
∂Φ

∂t
(St, t) +

1
2σ

2 S2
t

∂2Φ

∂S2
(St, t)

)

dt+
∂Φ

∂S
(St, t) dSt

and matching the deterministic and stochastic terms with those in (6) gives

∂Φ

∂t
(St, t) +

1
2σ

2 S2
t

∂2Φ

∂S2
(St, t) = r ψtBt + y φt St,

∂Φ

∂S
(St, t) = φt.

Eliminating ψtBt using (5) gives

∂Φ

∂t
(St, t) +

1
2σ

2 S2
t

∂2Φ

∂S2
(St, t) = r

(

Φ(St, t)− St
∂Φ

∂S
(St, t)

)

+ y St
∂Φ

∂S
(St, t)

for any attainable St, i.e., any St > 0. Rearranging shows that any self-
financing portfolio’s price function must satisfy

∂Φ

∂t
(S, t)+ 1

2σ
2 S2 ∂

2Φ

∂S2
(S, t)+(r−y)S ∂Φ

∂S
(S, t)−rΦ(S, t) = 0, S > 0. (7)

Finally, we apply the replication condition that the value of the portfolio at
T always equals the payoff of the option, i.e.,

Φ(S, T ) = Po(S), S > 0. (8)

Then we argue that as the option and the portfolio have exactly the same
cash-flows prior to expiry (in both cases here, no cash-flows) and exactly the
same values at expiry they must have the same values now, i.e.,

V (S, t) = Φ(S, t).

Solution of the Black–Scholes problem

The Black–Scholes problem for the price function of a European option with
payoff given by VT = Po(ST ) is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T,

V (S, T ) = Po(S), S > 0.

(9)

If we set V (S, t) = e−r(T−t) U(S, t) then

∂U

∂t
+ 1

2σ
2 S2 ∂

2U

∂S2
+ (r − y)S

∂U

∂S
= 0, S > 0, t < T,

U(S, T ) = Po(S), S > 0.
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and the Feynman Kǎc formula shows that

U(S, t) = E
Q
t

[
Po(ST ) |St = S

]
,

where St evolves according to

dSt
St

= (r − y) dt+ σ dWt. (10)

Note that this is not the same as the SDE for the actual share price, which
is (1)—the µ in (1) has become an r in (10).

This means that the option’s price can be written as

V (S, t) = e−r(T−t) E
Q
t

[
Po(ST ) |St = S

]
. (11)

We know that if St = S then

ST = S exp
(
(r − y − 1

2σ
2)τ + σWτ

)
, τ = T − t

and we compute the cumulative distribution function for ST , for x > 0, as
follows

FT (x) = prob(ST < x)

= prob
(
log(ST ) < log(x)

)

= prob
(

σWτ < log(x/S)− (r − y − 1
2σ

2)τ
)

.

As Wτ is N(0, τ) we can write σWτ =
√
σ2 τ Z where Z is N(0, 1), which

shows that
FT (x) = prob

(
Z < d∗

)
= N(d∗),

where

d∗ =
log(x/S)− (r − y − 1

2σ
2)(T − t)

√

σ2 (T − t)
, N(d∗) =

1√
2π

∫ d∗

−∞
e−p2/2 dp.

(12)
Differentiating FT (x) with respect to x gives the probability density function
for ST , conditional on St = S,

fT (x) =
exp

(
−1

2d
2
∗
)

x
√

2π σ2 (T − t)
, x > 0,

and so we arrive at an explicit formula for the option price,

V (S, t) = e−r(T−t) 1
√

2π σ2 (T − t)

∫ ∞

0
Po(x) exp

(
−1

2d
2
∗
) dx

x
, (13)

where d∗ depends on x (as well as S, r − y, σ and (T − t), as in (12)).
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General solution of the Black-Scholes problem

The Black-Scholes problem for the price function V (S, t) of a European
option with payoff Po(S) is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T,

V (S, T ) = Po(S), S > 0,

and the explicit formula for its solution is

V (S, t) =
e−r(T−t)

√

2π σ2 (T − t)

∫ ∞

0
Po(x) exp

(
−1

2d
2
∗
) dx

x
, (14)

where d∗ is defined as

d∗ =
log(x/S)− (r − y − 1

2σ
2)(T − t)

√

σ2(T − t).
. (15)

The Black-Scholes prices call and put options

The payoff for a call option is Po(x) = (x − K)+ = max(x − K, 0) and so
the integral in (14) becomes

I =
1√

2π σ2 τ

∫ ∞

0
(x−K)+ exp

(
−1

2d
2
∗
) dx

x

=
1√

2π σ2 τ

∫ ∞

K
(x−K) exp

(
−1

2d
2
∗
) dx

x

=
K√

2π σ2 τ

∫ ∞

0
(ez − 1) exp

(
−1

2d
2
∗
)
dz (x = K ez).

In terms of z and τ = T − t we find that

d∗ =
z√
σ2τ

− d−, d− =
log(S/K) + (r − y − 1

2σ
2)τ√

σ2 τ

which suggests the substitution ζ = z/
√
σ2 τ . This gives

I =
K√
2π

(∫ ∞

0
e
√
σ2τ ζ e−

1

2
(ζ−d−)2 dζ −

∫ ∞

0
e−

1

2
(ζ−d−)2 dζ

)

=
K√
2π

(

e
1

2
(d2

+
−d2

−
)

∫ ∞

0
e−

1

2
(ζ−d+)2 dζ −

∫ ∞

0
e−

1

2
(ζ−d−)2 dζ

)

,

where

d+ = d− +
√
σ2τ =

log(S/K) + (r − y + 1
2σ

2)τ√
σ2 τ

,

1
2

(
d2+ − d2−

)
= log(S/K) + (r − y)τ.
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Therefore

I =
S e(r−y)τ

√
2π

∫ ∞

0
e−

1

2
(ζ−d+)2 dζ − K√

2π

∫ ∞

0
e−

1

2
(ζ−d−)2 dζ

=
S e(r−y)τ

√
2π

∫ d+

−∞
e−

1

2
ξ2 dξ − K√

2π

∫ d−

−∞
e−

1

2
ξ2 dξ (ξ = d± − ζ)

= erτ
(

S e−yτ N(d+)−K e−rτ N(d−)
)

.

Multiplying by e−rτ gives the celebrated Black-Scholes formula for the price
(function) of a European call,

C(S, t) = S e−y(T−t)N(d+)−K e−r(T−t)N(d−), (16)

where

d± =
log(S/K) + (r − y ± 1

2σ
2)(T − t)

√

σ2(T − t)
, N(x) =

1√
2π

∫ x

−∞
e−

1

2
p2 dp.

The ∆ for a call option is ∆c(S, t) = (∂C/∂S) = e−y(T−t)N(d+).
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