B8.3 Week 4 summary 2020
The Black—Scholes model

We will consider a slightly generalized version of the classic Black—Scholes
model. Over each infinitesimal period [¢,t + dt) the share pays y S;dt in
dividends, where for our purposes ¥ is a constant known as the continuous
dividend yield. This is a poor but widely used model for dividend paying
shares.

With reinvestment of dividends, one share at time zero grows to e¥!
shares at time ¢ and the total value at time t is p; = e¥' S;. If we assume

that S; evolves as

ds
?tt:(u—y)dtJrUth, (1)

where p is known as the drift, y is the continuous dividend yield and ¢ > 0
is the volatility, then It6’s lemma shows that
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If we hold the shares and reinvest the dividends to buy more shares then the
value of the holding at time ¢ is p; and for this reason we write the evolution
of Sy as (1), which is equivalent to writing

Sp = Soexp((p—y—50°)t+aWy).
For fized T > 0 the distribution of St is given by

St =Soexp((p—y— 20T +Vo2T Z), Z~ N(0,1).

Delta hedging analysis

Assume an option’s payoff is give by Vi = P, (S7) and its price V; = V (S, t).
Set up a portfolio of one option and —A; shares, so at ¢ its market price at
time ¢ is

Mt = V;g — At St.
Let II; be the cumulative cost of executing this strategy, so
dHt = dV}/ — At dSt — yAt St dt,
the final term represents payment of the dividend yield to the owner of the
shares. Itd’s lemma applied to V; = V' (S, t) gives
2
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dll; = <8a‘t/(st,t) + %0-2 S 0
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which we make (instantaneously) risk-free by setting
ov
oS

A risk-free portfolio must grow at the risk-free rate, or there would be an
arbitrage opportunity, so dIl; = r M, dt, i.e.,

Ay = 5z (S ).

ov 0*V ov ov
( ot (Sta ) % St2 852 (Stv ) ySt S (Stvt)> =r <Vt St 95 (Stat)) )
which gives the Black-Scholes equation

ov 5 02V ov ov
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This holds for all attainable S; which, if Sg > 0, is any S; > 0. Thus we
obtain the Black-Scholes equation,

av L2V av
S (S0 +30° 52 S (S.0) +(r—y) S 5

for S > 0and t <T. At expiry Vp = V(Sp,T) = Po(Sr) implies that

(S,t) —rV(S,t)=0, (2)

V(S,T) = Py(S), S>0. (3)

Self-financing replication analysis

Here we try to replicate the option’s payoff using a portfolio of shares and
bonds. The bond price, B;, evolves as

dBy
—— =rdt. 4
S 8

Let ¢; be the number of shares at ¢t and v be the number of bonds. The
market value of the portfolio at t is

O, = ¢¢ St + 1 By (5)
and the change in the portfolio value is
d®y = ¢y dSy + by dBy + (Sy + dSy) doy + (By + dBy) dipy + y ¢y Sy dt,

the final term coming from dividends. If (S; + dS;) déy + (By +dBy) dipy = 0
we say the portfolio is self-financing; to buy more shares we have to sell
bonds and vice-versa. The self-financing condition is usually written as

d®y = ¢y dSy + P dBy +y ¢y Sy dt.



In our case it reduces to
d(I)t = ¢t dSt + 1/& T Bt dt + Yy ¢t St dt. (6)
If we write &, = ®(S,t) and apply It6’s lemma we find

0P 0*® 0P
v = (G50 + 40° 82 (51,0 ) e+ G (S0 as,

and matching the deterministic and stochastic terms with those in (6) gives

0P 9?P

S (S t) +30° 82 S5 (S t) =19 Bu+y du Si,

Eliminating 1y B; using (5) gives

0P
%(Sh t) = ¢t-

od 0’® od 0
(500 + 1o 52 S5 (500 = 7 (20500 = S:5¢ (510)) +u5: e (51,0

for any attainable Si, i.e., any S; > 0. Rearranging shows that any self-
financing portfolio’s price function must satisfy

0P 1 o , 020 0P
57 ($)+307 8% S5 (S, 8)+(r— )SaS

Finally, we apply the replication condition that the value of the portfolio at
T always equals the payoff of the option, i.e.,

(S,t)—r®(S,t) =0, S>0.(7)

B(S,T) = P,(S), S>0. (8)

Then we argue that as the option and the portfolio have exactly the same
cash-flows prior to expiry (in both cases here, no cash-flows) and exactly the
same values at expiry they must have the same values now, i.e.,

V(S,t) = ®(S, ).

Solution of the Black—Scholes problem

The Black—Scholes problem for the price function of a European option with
payoff given by Vi = P,(St) is

ov 0*V ov
§+%02528SQ+( —y)S%—rV—O S>0,t<T,

V(S,T) = P,(S), S>0.
If we set V(S,t) = e "T=OU(S,t) then

8U 2 , 02U oU
8t S 8S2+( )S% 0, S>0,t<T,

U(S,T) = Py(S), S >0.
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and the Feynman Kac formula shows that
U(S,t) = EZ[ Po(S1) | Si = S,
where S; evolves according to
— = (r—y)dt +odW,. (10)
Note that this is not the same as the SDE for the actual share price, which
is (1)—the p in (1) has become an r in (10).
This means that the option’s price can be written as

V(S,t) = e "I ER[ Py(Sr) | S: = S]. (11)

We know that if S; = S then
ST:SeXp((rf fia)T—l—aW) T=T—1
and we compute the cumulative distribution function for St, for x > 0, as
follows
Fr(z) = prob(Sr < x)

= prob(log(Sr) < log(z))

= prob(a W, <log(z/S)— (r—y— %02)7').
As W, is N(0,7) we can write 0 Wy = Vo271 Z where Z is N(0, 1), which

shows that
Fr(z) = prob(Z < d.) = N(d,),

where

log(x/S) = (r—y — 50)(T 1)
a 02(T—t2)  Nld) = \/ﬂ/

e P2y

(12)
Differentiating Frp(z) with respect to = gives the probability density function
for S7, conditional on S; = S,

and so we arrive at an explicit formula for the option price,

da:

V(S,t) =e 7T ) exp( d2) . (13)

W/

where d, depends on z (as well as S, r —y, o and (T' —t), as in (12)).



General solution of the Black-Scholes problem

The Black-Scholes problem for the price function V(S,t) of a European
option with payoff P,(.5) is
0%V ov
12 @2 _
7"‘50’5@"—(7"—3/)5%—7"/—0, S>0,t<T,
V(S,T) = Py(S), S>0,
and the explicit formula for its solution is
—r(T—t) 9) d
e x
V(Sit) = —— Py(z) exp(—1id?) =, 14

$:)= s | B ew(-3) T 09
where d, is defined as
~log(x/S) = (r—y — 50*)(T = 1)

o?(T —t). '

d, (15)

The Black-Scholes prices call and put options

The payoff for a call option is P,(z) = (x — K)T = max(z — K,0) and so
the integral in (14) becomes

1 > dx
I = —— - K)t _12y ==
\/271'027'/0 (@ ) exp( 2 *) z
1 > dz
- - - K _ 142y =
\/27TJ2T/K (@ )exp( 2 *) x
K o0
In terms of z and 7 =T — t we find that
z log(S/K)+ (r—y— 3037
d* - — d_, d_ =
o2T o2t

which suggests the substitution ¢ = z/v o2 7. This gives

K O JoTre —(e—d_ )2 12
] = —— eVorT( —5((—d-) dC—/ e 2(C=d-)% g
V2m (/o 0
K (@) [T ~te-ap ek
= ; e2\d3—ac e 2 +d¢ — e 2 - dg ),
V2 0 0
where

)

log(S/K — 152
d = d 4oty = B U 2yt 300
o°T

L(d% — d*) =log(S/K) + (r —y)T.
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Therefore

I = M Ooe—%(c—th-) / —5(¢—d- dC
\ 27 0 \/27r
Se(r—y)f dy d_
= - = d. —
V2T _ooe \/277/ (€ +=¢)

= € (S e VN(dy) — K e N(d_)) .

T

Multiplying by e™"" gives the celebrated Black-Scholes formula for the price
(function) of a European call,

C(S,t)=Se VT IN(dy) — Ke "TON(d_), (16)
where
log(S/K) + (r —y £ 50%)(T — 1) 1 [ 1
d+ = , N)=— e 2P dp.
* a?(T —1t) (=) V21 J oo P

The A for a call option is A.(S,t) = (0C/dS) = e VT~ N(d,).



