
B8.3 Week 5 summary 2020

The Black-Scholes prices of European call options

The explicit formula for the price of a European option is
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The payoff for a call option is Po(x) = (x −K)+ = max(x −K, 0) and
so the integral in (1) becomes
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Multiplying by e−rτ gives the celebrated Black-Scholes formula for the price
(function) of a European call,

C(S, t) = S e−y(T−t) N(d+)−K e−r(T−t) N(d−), (3)

where

d± =
log(S/K) + (r − y ± 1

2σ
2)(T − t)√

σ2(T − t)
, N(x) =

1√
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2
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Figure 1: Call price vs Payoff in BS model

The ∆ for a call option is ∆c(S, t) = (∂C/∂S) = e−y(T−t) N(d+).
To see this, first note that

∂d+
∂S

=
∂d−
∂S

=
1

S
√
σ2(T − t)

and from the normal density,
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2/2,

in particular, using the above calculation for d2+ − d2−,
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Then apply the chain and product rules, and simplify,

∂C
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2π
e−x

2/2

= e−y(T−t) N(d+)
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European Put options

The price of a European put option follows from put-call parity,

C(S, t)− P (S, t) = S e−y(T−t) −K e−r(T−t),

and is
P (S, t) = K e−r(T−t) N(−d−)− S e−y(T−t) N(−d+). (4)

Figure 2: Put price vs Payoff in BS model

The put’s delta (most easily found by differentiating put-call parity with
respect to S) is ∆p(S, t) = (∂P/∂S) = −e−y(T−t)N(−d+).

Some other properties can be observed also:

• For a call option, as S →∞, we have

d+ →∞ and d− →∞,

so CBS ≈ Ste
y(T−t) − Ker(T−t). This is natural, as the call we can

be sure that the call will be exercised, so its value is similar to the
value of a forward with the corresponding strike. Conversely, the put
option’s price converges to zero, for the same reason.

• As S → 0 we have d± → −∞, so the call price converges to zero, and
the put price converges to Ker(T−t) − Stey(T−t), which is the price of
the short forward with strike K.

• As t→ T , we have

d± →

{
∞ if S > K

−∞ if S < K

so CBS → (S −K)+, that is, the price of the option converges to its
payoff.
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Implied volatility.

How do we choose the value of σ?

• Estimation from historical data:

1

(N − 1)δt

N∑
i=1

(
Si+1 − Si

Si

)2

.

This is natural. However this method has certain drawbacks due to
the fact that, in reality, σ varies significantly over time, and it is rather
hard to capture its ”most recent” value: the estimator becomes less
reliable as we decrease N , while, if we increase it, we obtain an ”aver-
aged” value of σ over time.

• Another way is to deduce σ from the prices currently observed in the
market. This gives rise to Implied Volatility: given the market price
of an option, find the volatility for which the BS price coincides with
the market price:

V mrkt
t = V BS(St, t;σimp)

Implied Volatility is defined as a solution to the above equation, where
the options in question are the European call (or put) options.

Implied Volatility is well defined, provided

• V call,mrkt
t is not impossible: V call,mrkt

t ∈
[(
S −Ke−r(T−t)

)+
, S
]
.

• And ∂
∂σV

call,BS does not change its sign, as a function of σ.

The first condition is satisfied, since otherwise there is a model-independent
arbitrage.

The second condition is satisfied, since, as we’ll see, the BS Vega is
always nonnegative.

Implied Smile.

If the BS model was true, there would exist one value of implied volatility
σimp for call options of all strikes and maturities.

However, this is not true in practice. Typically, for each pair (T,K),
we have a different value of implied vol σimp(T,K).

Plotted as a function of negative log-moneyness x = log(K/S), this
function is typically convex around x = 0, and, hence, is often referred to
as the implied smile.
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Figure 3: Black-Scholes price of a call option with strike K = 100 and
underlying level S = 150, as a function of the volatility σ

Remark 1 Log-moneyness of a call or put option is defined as log(S/K).

In equities (where S is the price of a stock or stock index), the implied
smile typically has a negative skew, assigning higher values to negative
x = log(K/S) (i.e. K < S).

The general (heuristic) explanations for the presence of skew are all
related to the fact that people tend to overestimate the risks of extreme
negative events.

Figure 4: Implied volatility of options on the SP500 index, for the smallest
available maturity, plotted as a function of log-strike.
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Greeks and Hedging.

Assume the market is described by a BS model, and denote the price function
of an option by V (S, t).

Sensitivities of the option price V with respect to the input variables
(S and t) and parameters (σ and r) are called the Greeks.

These sensitivities are very important for hedging and risk manage-
ment, as they show how the value of the option changes with small changes
in the uncertain input!

Delta

Delta is defined as

∆ =
∂

∂S
V,

and it is the primary sensitivity, as, even if the model is true, the value of
underlying will change, and its change is likely to be of a higher magnitude
than the time increment.

Remark 2 Notice that

St+δt ≈ Stµδt+ Stσξ
√
δt,

where ξ is a standard normal.

Figure 5: Option price as a function of the underlying level S, and its
tangent line which represents the value of a portfolio consisting of ∆ units
of underlying and the right amount of money in bonds

For a call option ∆call = N(d+)
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Figure 6: Black-Scholes price of a call option with strike K = 100 as a
function of the underlying level S

By put-call parity, ∆put = ∆call − 1 = −N(−d+)
The portfolio consisting of ∆t units of St and Vt −∆tSt units of wealth

in the bank account is an ”instantaneous perfect hedge” of a short position
in the option, in the BS model.

It is still a reasonably good hedge in other models.

Example 1 Consider a call option with r = 0.05, σ = 0.2, T = 1, K = 100.
If S = 100, then V = 10.396 and ∆ = 0.635. We open the Delta-hedge, and
the hedged portfolio consists of

• ∆tSt invested in stock,

• −Vt in the option

• and Vt −∆tSt in bonds

In total, we have 10.396 − 0.635 · 100 = −53.11 invested in stock and
option, and 53.11 in bonds.

Suppose, on the next day S = 101. The value of the total position in
stock and option becomes 11.013 − 0.635 · 101 = −53.12. The increment
from the bond position is negligible. It is reasonable to measure the error of
the hedge (which is due to ”freezing” the hedging weights) by the total value
of all positions at the final time. Then, the error of the hedge relative to the
increment of the underlying asset is of the order 10−2.

In practice, we can only trade finitely often.
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Figure 7: Black-Scholes Delta of a call option with strike K = 100 as a
function of the underlying level S

As a result, we encounter the discretization error – the price of the
hedging (replicating) portfolio no longer coincides with the option price at
all times.

In particular, we cannot keep both positions – in the stock and in
bonds – as prescribed by the BS model.

Therefore, at each moment of rebalancing, we have to choose whether

• we keep ∆ (the amount of shares of stock) as prescribed by the model,
and invest the rest of the available capital in bonds (or borrow the
required amount by shorting),

• or keep γtBt (the amount of money in bonds) as prescribed by the
model, and invest the rest in the stock.

Typically traders choose to keep the value of ∆ as prescribed by the
model, because changes in the stock price are more significant than changes
in the value of bonds.

Such strategy is called Delta-hedging.

The nature of the discretization error is explained in Figure 8.

Gamma

Gamma is the sensitivity of ∆ with respect to changes in S:

Γ =
∂

∂S
∆ =

∂2

∂S2
V.
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Figure 8: Discretization error of the Delta-hedging. The hedging portfolio
is set up at time t, however, at time t+δt, since it has not been updated dy-
namically in the time interval [t, t+δt], the value of the hedging portfolio no
longer coincides with the option price. Thus, in order to stay self-financing,
we cannot choose both γt+δt and ∆t+δt as prescribed by the BS model.

It measure how fast the hedging weight ∆ changes with the changes in
the underlying.

This is important since, as mentioned above, in practice we only trade
at discrete times.

It is clear from Figure 5 that the smaller is the curvature of the price of
an option, as a function of S, the smaller is the error of the discretization
hedge – the difference between the price function and its tangent line around
the point of tangency.

Thus, Gamma measures the discretization error.

Let’s see make this statement more precise. Assume we have short-sold
an option and set up the hedging portfolio at time t:

γt = Vt −∆tSt, ∆t =
∂

∂S
V (St, t)

Then the hedging error at time t+ δt is given by
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γtBt+δt + ∆tSt+δt − V (St+δt, t+ δt)

= (V (St, t)−∆tSt)(1 + rδt) + ∆tSt+δt − V (St+δt, t+ δt)

= Vt − St
∂

∂S
Vt + rδt(Vt − St

∂

∂S
Vt)

− Vt − δt
∂

∂t
Vt − (St+δt − St)

∂

∂S
Vt

− 1

2
σ2S2

t (Wt+δt −Wt)
2 ∂

2

∂S2
Vt + St+δt

∂

∂S
Vt + o(δt)

= −1

2
σ2S2

t

∂2

∂S2
Vt((Wt+δt −Wt)

2 − δt) + o(δt)

= −1

2
σ2S2

t Γt((Wt+δt −Wt)
2 − δt) + o(δt),

where o(δt) is a function satisfying

o(δt)

δt
→ 0,

as δt→ 0.

Notice that (δWt)
2−δt is a random variable with zero mean and variance

2(δt)2. It is easy to see that the average absolute value of this term is of the
order const δt.

We conclude Γt scales the main term in the discretization error of the
hedge.

If Γt < 0 (short Gamma), the hedged portfolio benefits from large market
moves, and looses on small ones.

If Γt > 0 (long Gamma) – vice versa.

If we hedge a long position in the option, the opposite conclusions hold.

Remark 3 Heuristics: even though the volatility in BS model is constant,
one can think of an approximate volatility that results from estimating the
price returns, or, equivalently, the magnitude of Wt+δt −Wt. In that case,
if we (somehow) knew that the period of high magnitude of Wt+δt − Wt,
predicted by high estimated volatility, is coming, we could make money by
hedging an option with short gamma.

Gamma of a call is

Γcall =
e−

1
2
d2+

Sσ
√

2π(T − t)

As t→ T , Γcall → ∂2

∂S2 (S −K)+ = δ(S −K)
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Figure 9: Black-Scholes Gamma of a call option with strike K = 100 as a
function of the underlying level S

Due to put-call parity, the put Gamma is the same.
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