
B8.3 Week 6 summary 2020

Gamma hedging

We can reduce the discretization error of the hedge over the first time step
by Gamma-hedging.

We cancel the current (instantaneous) Gamma of our option V by open-
ing a position in another option V 1. Typically, we hedge an exotic option
with underlying and a vanilla call or put. The current value of the resulting
portfolio is given by

−Vt + ∆1V 1
t + ∆St + γBt = 0,

due to self-financing. We would like it to stay close to zero at time t+δt.

The above portfolio is Gamma-neutral if

∂2

∂S2
Vt −∆1 ∂

2

∂S2
V 1
t = 0.

So

∆1 =
∂2

∂S2Vt
∂2

∂S2V
1
t

=
Γt
Γ1
t

.

Thus, we obtain a new option which is a linear combination of V and
V 1. We then Delta-hedge this new option:

∆ =
∂

∂S
Vt −∆1 ∂

∂S
V 1
t

So, strictly speaking, Gamma-hedging is a way to construct an instan-
taneous Gamma-neutral portfolio, which is then Delta-hedged.

It is ”instantaneous” because it is no longer Gamma-neutral at time
t+ δt. And, if we want to repeat the procedure over the next time interval,
we need to change ∆1.

Example 1 Let V be the price of a 91-day call with strike 100 and V 1 be
the price of a 181-day call with strike 105.

Assume that St = 100, r = 0.05, σ = 0.3.

Then, we have:

Vt = 6.5583, ∂
∂SVt = 0.56202, ∂2

∂S2Vt = 0.02631,

and

V 1
t = 7.3295, ∂

∂SV
1
t = 0.49569, ∂2

∂S2V
1
t = 0.01888.

Applying the above formulas, we obtain:
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∆1 = 1.394, ∆ = −0.1290, ∆1V 1
t + ∆St − Vt = −9.241.

If the underlying changes to St+δt = 101, then Vt+δt = 7.094, V 1
t+δt =

7.8052, ∆1V 1
t + ∆St − Vt = −9.243.

If the underlying changes to St+δt = 105, then Vt+δt = 9.645, V 1
t+δt =

10.009, ∆1V 1
t + ∆St − Vt = −9.237.

The increments from the bank account are, as usual negligible provided
δt is small. Thus, we conclude that the hedging error (which is due to
discretization), relative to the increment of the underlying asset, is of the
order 10−3.

Robustness of the Black-Scholes formula

We now see a remarkable robustness property of BS-style hedging. We know
that the stock price dynamics in the BS model are almost certainly wrong,
but this does not necessarilty imply that we cannot use a delta-hedging rule
based on the BS formula to achieve a successful hedge, even in the face of
severe model error, as the following argument shows.

Suppose the true price process of a stock is

dSt = µtStdt+ σtStdWt,

where (µt, σt)t≥0 are processes adapted to a filtration F = (Ft)t≥0. The
market is not necessarily complete, so the filtration F can be larger than
filtration generated by the BM W .

Suppose a trader sell an option (say, a call with some maturity T ) at
time zero using an IV of σ0. That is, the option is sold for v(0, S0) where
v(t, x) solves the BS PDE with volatility σ0:

vt(t, x) + rxvx(t, x) +
1

2
σ20x

2vxx(t, x)− rv(t, x) = 0. (1)

The trader uses the proceeds of the option sale to form a hedge portfolio
with initial value X0 = v(0, S0), and then uses the hedge Ht = vx(t, St) (so
that Xt −HtSt is in cash) at t ∈ [0, T ].

Define Rt := Xt − v(t, St), as the “tracking error” (or residual risk).
Using the Itô formula and the PDE satisfied by v(t, x), we have (exercise!)

d(e−rtRt) =
1

2
e−rtS2

t vxx(t, St)(σ
2
0 − σ2t )dt.

We conclude that since vxx(t, St) ≥ 0 (for both a call and a put) we have
RT ≥ 0 a.s. if σ0 ≥ σt for all t ∈ [0, T ]. In other words, the hedging
strategy makes a profit with probability 1 if the implied volatility σ0 is
high enough. In this sense, successful hedging is entirely a matter of good
volatility estimation.
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This is a crucial result, as it shows that successful hedging is quite pos-
sible even under significant model error. Without some robustness property
of this kind, it is hard to imagine that the derivatives industry could exist
at all.

Volatility and Vega.

Volatility σ is the only parameter in the Black-Scholes model that is not
directly observed in the market.

It is, therefore, important to be able to evaluate the dependence of option
price on volatility.

The corresponding sensitivity is called Vega:

ν =
∂

∂σ
V

In the BS model, σ is constant, so hedging with respect to changes in σ
doesn’t make sense.

However, one can ask: what if my estimate of σ is wrong?

To estimate how far off, in this case, the computed option price is from
the ”true” price, we need to find Vega.

For a call option, we have

νcall =

√
T − t

2π
Se−

d2+
2 .

And it tends to zero as t→ T , since the payoff is independent of σ.

Figure 1: Black-Scholes Vega of a call option with strike K = 100 as a
function of the underlying level S

It is the same for a put, due to put-call parity.

3



Vega-hedging can be defined in the same way as Gamma-hedging,
however, its purpose is different:

rather than reducing the discretization error, it is meant to reduce the
model error – a misspecification of σ.

Given an additional derivative with price V 1, the Vega-hedge of a short
position in the original option prescribes to hold ∆1 units of V 1 and ∆ units
of S.

In order to make the portfolio instantaneously Vega-neutral, we need

− ∂

∂σ
Vt + ∆1 ∂

∂σ
V 1
t = 0.

Therefore,

∆1 =
∂
∂σVt
∂
∂σV

1
t

=
νt
ν1t

As before, ∆ is determined as the corresponding S-derivative of the
portfolio of options V −∆1V 1, assuming ∆1 is fixed:

∆ =
∂

∂S
Vt −∆1 ∂

∂S
V 1
t

Of course, in order to keep the portfolio Vega-neutral at the next moment
in time t+ δt, the value of ∆1 (as well as ∆) will need to be changed at that
time.

Example 2 Consider a call option with T = 90/252, r = 0.05, σ = 0.2,
K = 100, S = 100. Then V = 4.5922, ν = 19.654.

The additional derivative is a call with T = 180/252 and K = 105.

Then V 1 = 4.9925, ν1 = 26.727, ∆1 = ν/ν1 = 0.735, and the total value
invested in the options according to the Vega-hedge is ∆1V 1−V = −1.4026.

Assuming the value of the underlying and time do not change, if the
”true” σ turns out to be 0.22, then V = 4.9925, V 1 = 4.8748 and the total
value invested in options by the Vega-hedge is ∆1V 1 − V = 1.4095.

We can see that, even the error in the option price, due to misspecifica-
tion of volatility, is around 0.4, the Vega-neutral portfolio is only mispriced
by less than 7 · 10−3.

Remark 1 Vega hedging makes sense if one believes that the ”true” volatil-
ity is constant, but we may be mistaken about its true value.
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However, sometimes, you may see a description of Vega-hedging as ”hedg-
ing the non-constant volatility”. It is good to remember that Vega-hedging
is not the right hedging strategy in the presence of dynamically
changing volatility! In fact, if the volatility is believed to be changing dy-
namically, then the more complicated stochastic volatility models have
to be used to compute the right hedge.

Using a constant volatility model, such as the Black-Scholes, to de-
sign a hedge against stochastic volatility is, clearly, self-contradictory.
It may sometimes be used in practice, if other options are too hard to im-
plement, however, then, one has to be very careful and make sure that the
side effects of such hedging do not overweigh the positive impact.

Vega and Gamma.

In fact, there is a universal relation between Vega and Gamma which
holds for all European options, because their prices are functions of
time and the value of the underlying and these functions satisfy the
BSPDE.

Consider the BSPDE

∂

∂t
V +

1

2
σ2S2 ∂

2

∂S2
V + rS

∂

∂S
V − rV = 0

and differentiate it with respect to σ.

For example,

∂

∂σ
V = ν,

∂2

∂σ∂t
V =

∂

∂t
ν

and so on.

As a result, we obtain

LBSν =
∂

∂t
ν +

1

2
σ2S2 ∂

2

∂S2
ν + rS

∂

∂S
ν − rν = −σS2 ∂

2

∂S2
V = −σS2Γ, (2)

with ν(S, T ) = 0.

In PDE language, the above equation means that ”−σS2Γ” is a source
for ν.

Notice also that σS2Γ = σS2 ∂2

∂S2V satisfies the BSPDE (recall homework
exercise).

Therefore, it is easy to check that
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ν(S, t) = (T − t)σS2Γ(S, t)

satisfies the PDE (2) with the terminal condition ν(S, T ) = 0.

Indeed, we have

LBS
[
(T − t)σS2Γ(S, t)

]
= −σS2Γ + (T − t)LBS

[
σS2Γ(S, t)

]
= −σS2Γ

This is a useful trick, and a good example of how the PDE techniques
may help in establishing certain non-trivial relations between various quan-
tities in mathematical finance.

Other Greeks

There are also higher order sensitivities, such as Vanna.
Vanna is the sensitivity of Delta with respect to changes in volatility σ.
This is a measure of model dependence of the Delta-hedging strategy

itself.
Theta Θ is sensitivity with respect to t, and measures the maturity

sensitivity of our portfolio. Rho ρ is sensitivity with respect to the interest
rate r, and measures the potential impact of interest rate changes on the
value of the portfolio (more important over the long-term).

Given enough trading instruments (assets, options), we can cancel the
higher order sensitivities as well.

However, decreasing the risk associated with a wrong choice of parame-
ters, we can increase the more general model risk: that our family of models
(the BS models, parameterized by r and σ) is wrong itself!

Therefore, one should find an optimal trade-off, and shouldn’t go too
far with ”matching the Greeks”.

Timeo Danaos et dona ferentes (I fear the Greeks, even those
bearing gifts) —Virgil, Aeneid

Some properties of solutions of the Black-Scholes equation

The Black-Scholes equation is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T (3)

and it has the following properties:

1. it is linear;

2. it is solved backwards in time, for t < T ;
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Figure 2: Jump in share price across a discrete dividend date.

3. if V (S, t) is a solution so too is V (λS, t) for any λ > 0;

4. V (S, t) depends on t and T only through the combination T − t;

5. if V (S, t) is a solution so too is S
(
∂V/∂S) (and, by induction, so too

are Sn
(
∂nV/∂Sn

)
for n = 2, 3, . . .);

6. if V (S, t) is a solution so too is

V̂ (S, t) = (S/A)2α V
(
B2/S, t

)
, 2α = 1− 2(r − y)/σ2,

for any constants A > 0, B2 > 0.

Discrete dividends

Suppose that a share pays a deterministic dividend D at time tD. If both
D and tD are known in advance we must have

St−D
= St+D

+D ⇐⇒ St+D
= St−D

−D

otherwise there is an arbitrage opportunity. If we have an option on this
share then we don’t get the dividend and so we must have the jump condition

V
(
St−D

, t−D
)

= V
(
St+D

, t+D
)

= V
(
St−D
−D, t+D

)
.
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Figure 3: General strategy for dealing with a discrete-time event.

As this is true for any St−d
and we solve the Black-Scholes equation backwards

in time, we generally write this jump condition as

V (S, t−D) = V (S −D, tD+). (4)

The strategy is to solve the Black-Scholes equation back from expiry, T ,
until the dividend date t+D, then apply (4) to find V (S, t−D) and then solve
the Black-Scholes equation backwards from t−D to the present time, using
V (S, t−D) as a “payoff” at t−D.

Note that D can be a function of S and t. Indeed, if we want the share
price to remain positive, it must be. Modelling discrete dividend payments
for a share price that follows geometric Brownian motion is problematic to
this day.

Discrete dividend yields

If we assume a discrete dividend of the form

D = dy St−d
,

where the discrete dividend yield dy < 1, i.e., the dividend is proportional
to the share price immediately before the dividend is paid then we find that

St−d
= St+d

+ dy St−d
⇐⇒ St+d

= (1− dy)St−d
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Jump condition across a discrete dividend yield date
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Figure 4: Jump condition for a call option on a share that pays a discrete
dividend yield.

and the jump condition for the option becomes

V (S, t−d ) = V
(
(1− dy)S, t+d

)
. (5)

We can then use the fact that if V (S, t) is a solution of the Black-Scholes
equation then so too is V (λS, t), with λ = (1− dy) in this case, to see that
the solution for t < td is simply

V
(
(1− dy)S, t

)
,

as it is a solution of the Black-Scholes equation and obviously satisfies the
“payoff” condition at t−d .

A call option with one discrete dividend yield

Let Cv(S, t) be the price function for a vanilla call, i.e.,

Cv(S, t) = SN(d+)−K e−r(T−t) N(d−),

d± =
log(S/K) + (r ± 1

2σ
2)(T − t)√

σ2(T − t).
Let the share pay a discrete dividend yield of dy at time 0 < td < T and
let C(S, t) be the price function for a call written on this share. Then for
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td < t < T we have
C(S, t) = Cv(S, t).

Across the dividend date td, we apply (5) to get

C(S, t−d ) = Cv

(
(1− dy)S, td

)

and then note that as 1−dy > 0 is a constant, the function Cv

(
(1−dy)S, td

)

is itself a solution of the Black-Scholes equation and so for all t < td we have

C(S, t) = Cv

(
(1− dy)S, t

)
.

The same reasoning shows that if there are n discrete dividend yields at
times

t < t1 < t2 < · · · < tn < T

between now and expiry with dividend yields

d1, d2, . . . , dn,

where each dk < 1, then

C(S, t) = C
(
αnS, t

)
, where αn =

n∏

k=1

(1− dk).

Clearly this result generalises to any European option, regardless of the its
payoff.

American options

An American option is an option which can be exercised at any time between
being initiated and expiring (inclusive). It follows that

• It can not be less valuable than the payoff Po(St, t), which may depend
on t because the option can be exercised at any time 0 ≤ t ≤ T . If it
were, the arbitrage is to buy the option and immediately exercise it to
receive the payoff (which is greater than the price).

• It can’t be worth less than an otherwise equivalent European option.
If it were, the arbitrage is to buy the American option, write the
European option and put the positive profit in the bank. Then hold
the American option until expiry (this may not be optimal, but if you
own the American option you are free to do it) at which point it equals
the European option and so you are perfectly covered.

It is easy to see that if r > 0 then for a European put we have

lim
S→0

P (S, t) = K e−r(T−t) < K.
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Since the European put price is differentiable, it is also continuous and so
this shows that prior to expiry a European put is less valuable than the
payoff for small enough S. As an American put can’t be less valuable than
the payoff, the values of American and European puts must be different. As
they both have the same payoff, (K − S)+, the American put can’t satisfy
the Black-Scholes equation for all S > 0.
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