
B8.3 Week 8 summary 2020

Down and out barrier call options

A down and out barrier call option becomes worthless (colloquially refered
to as “knocking out”) if the share price falls to or below a barrier level,
B > 0, at any time during the option’s life. In these notes, we take B to be
a constant. If St > B for all t ∈ [0, T ] then it has payoff (ST −K)+. The
pricing problem, assuming that the option has not already knocked out, is
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Cdo(S, T ) = (S −K)+, S > B, Cdo(B, t) = 0, t ≤ T.

The case 0 < B ≤ K

The trick here is to recall that if V (S, t) is a solution of the Black-Scholes
equation then so too is

V̂ (S, t) = (S/B)2α V
(

B2/S, t
)

,

where 2α = 1− 2(r − y)/σ2, and that

V̂ (B, t) = (B/B)2α V
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So if Cbs(S, t) is the price of a vanilla call option we see that

Cdo(S, t;B) = Cbs(S, t)− (S/B)2αCbs

(

B2/S, t
)

is a solution of the Black-Scholes equation which satisfies Cdo(B, t;B) = 0.
Then we notice that as B < S and B ≤ K we have B2/S < B ≤ K so that

Cbs
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=
(
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which shows that for S > B

Cdo(S, T ;B) = Cbs(S, T ) = (S −K)+.

Thus Cdo(S, t;B) satisfies the pricing problem and is the Black-Scholes value
of the barrier option.

The case B > K > 0

In this case the trick above fails because we find that C(B2/S, T ) 6= 0 for
all S > B. The way to deal with it is to truncate the payoff of the call so
that it becomes equal to zero if S ≤ B but remains unchanged if S > B,
i.e., replacing the vanilla call above with an option whose payoff is

V (S, T ) =

{

0 if 0 < S ≤ B,

S −K if S > B > K.
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This payoff can be achieved by using a vanilla call with strike B plus (B−K)
digital calls, also with strike B. So instead of using the vanilla call price as
above, we work with

V (S, t;B) = Cbs(S, t;K = B) + (B −K)Cd(S, t;K = B).

The Black-Scholes price function is given by

Cdo(S, t;B) = V (S, t;B)− (S/B)2αV
(

B2/S, t
)

since this satisfies the Black-Scholes equation and boundary condition at
S = B and if S > B then B2/S < B and so V

(

B2/S, T
)

= 0, giving us the
correct payoff at T .

The down-and-in barrier call

This option remains worthless if the share price does not fall below the
barrier B > 0 during the life of the option. If at some point during the
life of the option we have St < B then the option turns into a vanilla call
with payoff (ST −K)+; this is often referred to as “knocking in”. If we hold
both a down-and-out and a down-and-in call option then we are guaranteed
the payoff (ST −K)+ and so there is a down-and-in / down-and-out parity
relation,

Cdo(S, t;B) + Cdi(S, t;B) = Cbs(S, t)

and hence
Cdi(S, t;B) = Cbs(S, t)− Cdo(S, t;B).

In the case that B < K this simplifies to

Cdi(S, t;B) = (S/B)2αCbs

(

B2/S, t
)

.

Note that these formula for Cdi are only valid if S ≥ B for all time up to the
present. As soon as S < B the option turns into a vanilla call and remains
so until expiry.

Asian options

Asian options are options which depend on the average share price over the
life of the option. In practice, it is usually the arithmetic average which we
can define using the running sum of the share price

Rt =

∫ t

0
Su du, AT = RT /T =

1

T

∫ T

0
Su du,

where AT is the average price at T . The option’s price is a function of St,
Rt and t, Vt = V (St, Rt, t) for some function V (S,R, t). If we note that

dRt = St dt
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and assume that dW 2
t = dt (which really means d[W ]t = dt) and perform a

formal Taylor series expansion then we find
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where all partial derivatives are evaluated at (St, Rt, t). Applying the usual
hedging (or self-financing replication) argument(s) shows that to eliminate
risk we must hold

∆t = ∆(St, Rt, t) =
∂V

∂S
(St, Rt, t)

shares at time t and that the pricing equation is
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This holds for all S > 0, t < T and R > 0; as Su > 0, Rt =
∫ t

0 Su du can
take only positive values.

If the option is what is known as a floating-strike asian call, where the
average plays the role of the strike, so the payoff is

V (S,R, T ) =
(

S −R/T
)+

,

then we can simplify the problem by working the variables

x = R/S, V (S,R, t) = S u(x, t),

i.e., by pricing relative to the share price rather than a unit of currency (in
finance this is usually called a change of numeraire). We find that
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Substituting these into the pricing equation (1) gives
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At expiry, t = T , we have V (S,R, T ) = (S −R/T )+ = S u(x, T ) and so

u(x, T ) = (1− x/T )+. (3)
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The Feynman–Kac formula shows that the solution of problem (2)–(3) can
be expressed as

u(x, t) = e−y(T−t)
E

[

(

1− xT /T
)+

|xt = x
]

,

where xτ evolves as

dxτ =
(

1 + (y − r)xτ
)

dτ + σ xτ dWτ ,

for τ > t, with xt = x.
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