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Throughout this course we will use examples of quantum systems which were discussed in the Part A course.

It will be important to be familiar with the structure of these examples, so if you have forgotten some of this,

you should solve the revision problems on any problem sheet. They will not be marked by the class TAs.

1.0 Harmonic oscillator (Revision)

Consider a quantum particle moving in one dimension. Show that the harmonic oscillator Hamiltonian

H = P 2

2m + 1

2
mω2X2 ,

can be expressed as H = 1

2ma+a− + ~ω
2

= 1

2ma−a+ − ~ω
2
, where you should define a± with (a+)

∗ = a−.

Further show that for any state ψ,

||a±ψ||2 = 2mEψ(H)±m~ω .

Finally show that

[a−, a+] = 2mω~ , [H, a±] = ±~ωa± .

Suppose that there is a normalised state ψ0 (the ground state) for which a−|ψ0〉 = 0. Show that |ψn〉 =

(a+)
n|ψ0〉 is an energy eigenstate with energy En = (n+ 1

2
)~ω. Comment on the existence and uniqueness of

these energy eigenstates.

1.1 Coherent states for the harmonic oscillator

This problem is a modified version of problem 2.19 from Sakurai’s Modern Quantum Mechanics. We inherit

notation from the previous revision problem.

A coherent state of the quantum harmonic oscillator is an eigenstate of the (normalized) annihilation operator

α− = (2m~ω)−1/2a− (define also α+ = (2m~ω)−1/2a+).

(i) Show that |λ〉 = e−
1
2
|λ|2eλα+ |ψ0〉 is a normalised coherent state with α− eigenvalue λ for any complex λ.

(ii) Determine the expansion of the coherent state |λ〉 in terms of the (normalised) energy eigenstates |n〉 =
|ψn〉/(||ψn||)1/2. Find the most probable value of n to be observed when measuring the energy of |λ〉.

(iii) Show that a coherent state can be obtained by applying the finite displacement operator U(a) =

exp (−iPa/~) to the ground state |ψ0〉.

(iv) Determine the overlap between two different coherent states |λ〉 and |µ〉 for µ 6= λ. Explain why there is

no contradiction in the fact that states with different eigenvalues are not orthogonal.

In this problem it may be useful to look up and use the “Baker-Campbell-Hausdorff” formula if you have not

seen it before.

1.2 Practice with bra-ket notation

Let |ξ〉〈η| be the linear operator |ξ〉〈η| : |ζ〉 7→ |ξ〉〈η|ζ〉 = (η, ζ)|ξ〉.

(i) Show that if ξ is normalised then |ξ〉〈ξ| is a projection, and projects onto the state ξ.

(ii) Show that if φ1, φ2, . . . φn is an orthonormal basis for the Hilbert space H, then
∑n
j=1

|φj〉〈φj | is the

identity operator on H.

(iii) Show that the trace of the linear operator |ξ〉〈η| is

Tr[|ξ〉〈η|] = (η, ξ) .

[The trace of a linear operator A can be defined as Tr[A] =
∑

j(φj , Aφj).]
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1.3 Dispersion of Gaussian wave packet

Consider a free particle in one dimension whose initial wave function (at time zero) is the stationary Gaussian

wave packet given by

ψ(x) =
1

(2πσ2)1/4
e−x

2/4σ2

.

(i) Find the corresponding wave function ψ̃(p) in momentum space by decomposing the initial wave function

into (generalised) momentum eigenstates |p〉.

(ii) Now evolved the resulting state to some time t using the fact that the free particle Hamiltonian is

diagonalised on the momentum states.

(ii) Directly determine the time evolution of the position-space wave function using the free particle propa-

gator U(x′, t′;x, t) as described in lectures.

Comment on the behaviour of the dispersions ∆ψ(X) and ∆ψ(P ) over time.

In this problem, you may find it useful to know (if you don’t know it already) the expression for the general

Gaussian integral (valid for R(A) > 0) is

∫ ∞

−∞

exp

(

−1

2
Ax2 +Bx

)

dx =

√

2π

A
exp

(

B2

2A

)

.

1.4 Practice with identical particles

Consider a system of two identical particles. First, assume that they are free to move in the interval [0, a] with

respective coordinates x1 and x2.

(i) Explain why, if the particles are fermions, the ground state wave function is given by

ψ(x1, x2) =
1√
2
(ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)) ,

where x1 and x2 are the positions of the particles and ψk(x) =
√

2

a sin
(

kπx
a

)

. What is the ground state

wave function if the particles are bosons?

(ii) In both cases, calculate the probability that, in the ground state, both particles will be found in the

interval [0, 1
2
a].

Now the particles move on the full x-axis with external potential V (x) = 1

2
mω2x2. They also repel one

another with a force arising from an interaction potential Vint(x1, x2) = − 1

4
κmω2(x1 − x2)

2 with κ < 1 is a

real constant.

(iii) Define new coordinates y± := (x1±x2)/
√
2. Show that if the particles are bosons, then the wave function

ψ(y+, y−) must be an even function of y−. What if the particles are fermions?

(iv) Show that the time-independent Schrödinger equation separates when written in terms of y±. Given

that the normalised ground state and first excited state wave functions of the standard oscillator are

given by

ψ0(x) = (πσ2)−
1
4 exp

(

−x2/2σ2
)

, ψ1(x) =

√
2x

σ
ψ0(x) , where σ2 =

~

mω
,

determine the ground state wave function of the coupled system when the particles are bosons and when

they are fermions. Determine the spectrum of energy levels in both cases.

(v) Show that the expected distance |x1 − x2| between the particles in the ground state is twice as large for

fermions as for bosons. This is an example of what is sometimes called Pauli repulsion.

Please send comments and corrections to christopher.beem@maths.ox.ac.uk.
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