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Problem Sheet 2
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[Last update: 18:19 on Sunday 9th February, 2020]

There are three types of problems on this sheet. The first problem is revision from Part A (and a small

elaboration), and probably doesn’t need to be discussed in classes. Of the remaining problems, the two

starred problems are to be turned in for marking, while the two unstarred problems will not be marked.

You should try to solve all of the problems and they will all be subjects for discussion in classes.

2.0 Revision: angular momentum and spherical harmonics

The purpose of this question is to revise the details of the derivation of the structure of irreducible

representations of the angular momentum operators in a Hilbert space, and refresh some aspects of the

spherical harmonics that arise in the representation of angular momentum operators on wave functions

in three dimensions.

Recall the angular momentum commutation relations

[Ji, Jj ] = i~

3
∑

k=1

ǫijkJk .

Define J2 = J2
1 + J2

2 + J2
3 and J± = J1 ± iJ2.

(i) Check that [J2, Ji] = 0 and [J3, J±] = ±~J±. Deduce that in an irreducible representation of the

angular momentum operators, one can find a basis of joint eigenstates of J2 and J3 for which J2

takes a constant value and if J3|ψ〉 = ~m|ψ〉 then J3|J±ψ〉) = ~(m± 1)|J±ψ〉.

(ii) Compute 〈J±ψ|J±ψ〉 in terms of 〈ψ|ψ〉. Use this to prove that if we write the J2 eigenvalue as

~
2j(j + 1), then j must be a non-negative half-integer and the possible J3 eigenvalues can only be

of the form ~m where m takes values in −j,−j + 1, . . . , j − 1, j.

(iii) Explain why in an irreducible representation, each state with a given choice of quantum numbers

|j,m〉 is the unique such state (up to rescaling). Deduce the general structure of the spin-j angular

momentum representation.

Now consider the realization of orbital angular momentum operators Li acting on wave functions in R
3.

(i) Define x± = x1 ± ix2 = r sin θe±iφ and x3 = r cos θ. The corresponding partial derivatives are

∂± =
1

2

(

∂

∂x1
∓ i

∂

∂x2

)

, ∂3 =
∂

∂x3
,

so ∂±x± = 1 and ∂±x∓ = 0. Show that with respect to this basis, the components of the orbital

angular momentum operators L = x ∧ p = −i~x ∧∇ are given by

L± := L1 ± iL2 = ±~(2x3∂∓ − x±∂3) , L3 = ~ (x+∂+ − x−∂−) .

(ii) Use the defining relations L2 Y m
l (φ, θ) = ~

2l(l + 1)Y m
l (φ, θ) and L3Y

m
l (φ, θ) = m~Y m

l (φ, θ) to

show that L−Y
−l
l = 0. Therefore, deduce that rlY ±l

l can be identified with a constant multiple of

xl±. Use the raising and lowering operators to find expressions for the normalized Y m
l for l = 0, 1, 2.

(iv) Determine the action of the Laplacian on the functions rlY m
l . Don’t use spherical coordinates. Thus

infer that the spherical harmonics Y m
l are (up to normalization) simply the restriction to the unit

sphere of homogeneous, harmonic polynomials of degree l in three variables, with m measuring the

power of x+ minus the power of x−.
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2.1 Bloch waves*

Consider a particle moving in one dimension with potential given by a periodic function V (x) = V (x+ ℓ)

for some real ℓ > 0.

(i) Using the (discrete) translational symmetry of the potential, show that there will be a basis of

(generalized) energy eigenstates for the problem of the form

ψθ(x) = exp
(

iθx
ℓ

)

ϕ(x) ,

where ϕ(x) has the same periodicity properties as the potential. Explain why without loss of

generality you can take θ ∈ [−π, π].

(ii) For an eigenstate with energy E, show that ϕ(x) obeys the second order ODE

−
~
2

2m
ϕ′′(x)−

i~2

m

θ

ℓ
ϕ′(x) +

~
2θ2

2mℓ2
ϕ(x) = (E − V (x))ϕ(x) .

For what range of x should you solve this equation, and with what boundary conditions?

(iii) Now suppose that the potential is a lattice of delta functions,

V (x) = −λ
∑

n

δ(x− nℓ) , λ > 0 .

This is a model for a one-dimensional crystal, where at the locations of the atoms in the crystal

a particle experiences an ultralocal attractive interaction. Solve the ODE from the previous part

of the question in this case for E > 0. You should leave the expression in terms of the energy E

(or better, k where k2 = 2mE/~2), where you should show that k is implicitly determined by θ

according to

cos(θ) = cos(kℓ)−
α

k
sin(kℓ) ,

for a constant α that you determine.

You may want to consider your freedom to choose an appropriate range of values of x for which

to write your solution. You can make a choice, for example, so the delta function appears in the

middle of your interval.

(iv) Give a qualitative description of the allowed energy levels of the crystal. It will probably be useful

to do some investigations in a computational environment like Matlab or Mathematica. You should

discover the phenomenon of “electronic band structure”.

(v)* For your own entertainment, think about how you would generalize this story to the case of a

three-dimensional lattice of delta functions. The generalization of the choice of θ ∈ [0, 2π) is now

the choice of a point in the first Brillouin zone of the lattice.

2.2 Anti-unitarity

For a symmetry represented by a unitary operator U to be a dynamical symmetry, we require the condition

U exp(− iHt
~
) = exp(− iHt

~
)U ,

which implies U−1HU = H.

(i) If instead U is an anti-unitary operator, show that the above equation implies U−1HU = −H, and

explain why this means that a system with such a dynamical, anti-unitary symmetry would have

negative energy states with energy −E for every positive energy state with energy E.

(ii) Consider now the anti-unitary operator T that acts on wave-functions of one real variable by

complex conjugation:

T (ψ(x)) = ψ(x) .

Explain how this evades the above issue in the case of, say, the harmonic oscillator Hamiltonian,

for which T is a true symmetry.
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(iii) Consider a single particle in R
3 subject to the Hamiltonian

H =
P2

2m
+ L ·V ,

where L is the orbital angular momentum operator andV is a fixed (constant) vector. Is this system

T -symmetric? Formulate a general condition for a Hamiltonian of a single-particle system (written

in terms of X and P operators) to respect T symmetry. Can you explain why this condition should

hold intuitively?

2.3 Spin 1/2 and SU(2)

The Pauli spin matrices are defined by

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

.

For a vector a, we define σ · a = σ1a1 + σ2a2 + σ3a3. Derive the following relation:

(σ · a)(σ · b) = a · b I2×2 + iσ · (a ∧ b)

and thus deduce that the eigenvalues of σ · a are ±|a|.

Confirm that the re-scaled matrices { 1
2~σ1,

1
2~σ2,

1
2~σ3} satisfy the angular momentum commutation

relations, and further that

(σ · a)(σ · b) + (σ · b)(σ · a) = 2a · b I2×2 .

Check by direct computation that the matrix representing a rotation by angle θ about the axis designated

by a unit vector n is given by

exp

(

−
iθ

2
σ · n

)

= cos

(

θ

2

)

− i sin

(

θ

2

)

σ · n .

Argue that a two-by-two matrix of this form is the most general such unitary matrix with determinant

one, and so this representation gives a two-to-one identification of elements of SU(2) with those of SO(3).

2.4 Threefold addition of angular momentum*

Given three (distinguishable) spin-1/2 systems with angular momentum operators J
(1)
i , J

(2)
i , and J

(3)
i ,

respectively, all obeying the usual commutation relations. Consider the action of the total angular

momentum operators J tot
i = J

(1)
i + J

(2)
i + J

(3)
i on the tensor product of the three Hilbert spaces.

(i) Work out the decomposition of the composite Hilbert space into irreducible representations of the

total angular momentum operators.

(ii) Now consider the state1 | 12 ,
1
2 〉 ⊗ | 12 ,

1
2 〉 ⊗ | 12 ,−

1
2 〉. You can compute this state in two different

ways. First, combining the first two spins gives the state |1, 1〉, and then combining with the third

spin gives α|3/2, 1/2〉+ β|1/2, 1/2〉, for some numbers α and β. On the other hand, combining the

second and third spin in the first instance gives γ|0, 0〉+δ|1, 0〉, whereupon taking the further tensor

product with the first spin gives ǫ|3/2, 1/2〉+ ζ|1/2, 1/2〉.

Compute α, β, γ, δ, ǫ, ζ. If you’ve followed the instructions, you have probably most likely β 6= ζ.

Explain what went wrong, and identify the true answer for the resultant state.

(iii) Show that (J (1) + J (2))2 and (J (2) + J (3))2 each separately commute with (J tot)2 and J tot
3 , but do

not commute with one another. Use this insight to rephrase the resolution of part (ii) in terms of

two inequivaeltn choices of basis for the triple tensor product of the spin-1/2 representation.

Please send comments and corrections to christopher.beem@maths.ox.ac.uk.

1Here the convention is as in lectures that (normalized) basis states are written |j,m〉
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