
B7.3 Further Quantum Theory

Problem Sheet 3

Hilary Term 2020

[Last update: 23:57 on Wednesday 19th February, 2020]

On this problem sheet, the first three problems (on perturbation theory) are to be turned in for marking.

The last problem is on variational methods, which we will probably not discuss until very close to the

homework deadline. You should nevertheless try to solve the last problem for discussion in class.

3.1 Anharmonic oscillator

In lectures we encountered the one-dimensional anharmonic oscillator, with Hamiltonian given by

HAHO =
P 2

2m
+
mω2

2
X2 + λ

m2ω3

~
X4 , λ≪ 1 .

We derived the leading perturbative correction in λ to the ground state energy and announced the result

for the state itself, namely

E′
0 = 3

4
~ω , ψ′

0 = − 3

23/2
ψ2 −

3
1/2

25/2
ψ4 .

(i) Re-derive the above results in detail. You should, of course, use the formalism of ladder operators

α± as on problem sheet 1. Don’t do any integrals!

(ii) Now find the general result for the first-order corrections E′
n and ψ′

n for general n > 0. This could

get messy fast, so you will probably want to think of a good way to organize your calculations. It

might help to remember that α+α− = N acts according to Nψn = nψn.

Now consider the two-dimensional harmonic oscillator perturbed by an anharmonic coupling,

HAHO2d
=
P 2
1 + P 2

2

2m
+

1

2
mω2(X2

1 +X2
2 ) + λ

m2ω3

~
X2

1X
2
2 , λ≪ 1 .

In this case the unperturbed system has non-trivial degeneracy for each energy level other than the

ground state.

(iii) Compute the corrections to the ground state energy and wavefunction to first order in λ using

non-degenerate perturbation theory.

(iv) Now find the first-order corrections to the second, third, and fourth energy levels. (These are

degenerate levels, so you need to implement first-order degenerate perturbation theory and find

how the previously degenerate states are split). Observe how much degeneracy persists at these

levels to this order. Can you explain some or all of this remaining degeneracy using discrete

symmetries of the Hamiltonian?

3.2 Fine structure of the Hydrogen atom

There are three fine-structure corrections to the Hydrogen atom Hamiltonian are the relativistic kinetic

energy term, the spin-orbit coupling term, and the “Darwin” term,

H ′
KE =

−P 4

8m3
ec

2
,

H ′
SO =

e2

2m2
ec

2

L · S

r3
,

H ′
Dar =

π~2e2

2m2
ec

2
δ3(r) .
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In lectures we looked at the first-order corrections to the energy spectrum due to the spin-orbit term,

which are given by

E′
nlj =

nE2
n

mec2

(

j(j + 1)− l(l + 1)− 3

4

l(l + 1

2
)(l + 1)

)

.

In this exercise you will confirm this expression, and perform some of the integrals that were too pesky to

do on the board. You will also compute the comparable corrections coming from the relativistic kinetic

energy correction and the Darwin term.

(i) Using degenerate first-order perturbation theory, explain carefully why we can compute the first-

order corrections to the Hydrogen atom energy levels by evaluating

E′
nlj = 〈ψmnlj |H

′
KE +H ′

SO +H ′
Dar|ψ

m
nlj〉 ,

where ψmnlj is the Hydrogen stationary state in the total-angular momentum basis (i.e., diagonalizing

J2, L2, S2, and J3).

(ii) Compute the leading correction to the energy eigenvalues due to the relativistic kinetic term. For

this you should use that P 2 = 2meH + 2mee
2/r, which you can use to show that

〈

P 4

8m3
ec

2

〉

ψm
nlj

=
E2
n

2mec2
+

En
mec2

〈

e2

r

〉

nl

+
1

2mec2

〈

e4

r2

〉

nl

,

where the expectation values on the right-hand side are computed using just the radial wavefunctions

Rnl(r) that only depend on the principal and orbital angular momentum quantum numbers. You

can use the results1
〈

e2

r

〉

nl

= 2En ,

〈

e4

r2

〉

nl

=
4nE2

n

l + 1

2

.

(iii) Re-derive the expression above (and from lecture) for the energy shifts due to spin-orbit coupling.

For this calculation, it is important to be able to evaluate the radial integral2

〈

1

r3

〉

n,l

=
1

n3a3
1

l(l + 1

2
)(l + 1)

.

(iv) Now compute the contribution due to the Darwin term. You will recall that due to the centrifugal

term in the effective radial Schrödinger equation for the Hydrogen atom, only the wavefunctions of

the l = 0 states are non-vanishing at the origin. For these wave-functions one has (cf. Eqn. (3.7.58)

of Sakurai where Y 0
0 (θ, φ) = (4π)−

1

2 ):

Rn0(0) =
1

a
3

2n
3

2π
1

2

.

Taking all of the fine-structure corrections together, your final result for the shifted Hydrogen energy

levels should take the surprisingly simple form,

E′
n =

nE2
n

mec2

(

1

j + 1

2

−
3

4n

)

.

1Though, really, you should try to derive these expressions for the relevant radial integrals. For the first, recall that for

the Hydrogen-like atom with atomic number Z, one has

〈ψj

nlm
(Z)|H(Z)|ψj

nlm
(Z)〉 = Z2En(0) .

Differentiating with respect to Z and evaluating at Z = 1 allows you to compute 〈r−1〉. A similar trick can be used to

compute 〈r−2〉, but you have to pass to the effective radial quantum mechanics and remember that in the derivation of the

hydrogen atom, n = l+ k where k − 1 is the degree of the polynomial appearing in the radial wavefunction.
2For a bonus, you can derive this result using the following strategy: First, define the “radial momentum” operator

Pr = −i~(∂r + r−1) . Note that the radial component of the kinetic term in the spherical Schrödinger equation is given

by ~
2

2m
P 2
r . Then show that in any energy eigenstate ψ and for any operator A, one has 〈ψ|[A,H]|ψ〉 = 0 . Thus, setting

A = Pr, conclude that

e2
〈

1

r2

〉

−
1

me

〈

L2

r3

〉

= 0 ,

and thus, using the results of part (i), deduce the formula of interest.
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Perhaps the most surprising thing is that the l-dependence has cancelled out and the corrections are

completely controlled by the total angular momentum quantum number j. A much more transparent

derivation of this result proceeds using the relativistic Dirac equation.

3.3 Degenerate perturbation theory at second order

In the case of a degenerate energy level, the first-order corrections to the corresponding eigenstates are

given by

|ψ′
k〉 =

∑

m:Em 6=Ek

〈ψm|H ′|ψk〉

Ek − Em
ψm +

∑

r:Er=Ek
ψr⊥ψk

λrψr ,

where ψk is chosen to diagonalize the restriction of H ′ to the degenerate eigenspace.

(i) By formulating an appropriate solvability criterion for the second-order correction to the eigenstate,

ψ′′
k , find an expression for the coefficients λr. Under what conditions does your answer determine

the coefficients?

(ii) Apply your result to the analysis of the third energy level (unperturbed energy E = 3~ω) of

the anharmonically coupled oscillators from problem 3.1. Which perturbed states can you now

determine unambiguously at first order?

3.4 Variational Method

We want to explore the application of the variational method in a few examples. In each case below, use

the variational Ansatz given to estimate the ground state energy of the stated system.

(i) Harmonic oscillator (with potential V (x) = 1

2
mω2X2) with variational Ansatz ψα(x) ∼ exp(−αx2).

(ii) Harmonic oscillator with variational Ansatz ψa(x) ∼
1

x2+a2
. Not every Ansatz is a good one!

(iii) Particle in a box (the interval −a 6 x 6 a) with trial functions ψn(x) ∼ (a2 − x2)n for n = 1, 2, 3.

These will give you a few upper bounds on the ground state energy. Compare to the exact answer.

If you are interested and adventurous, try to consider the case ψλ(x) ∼ (a2 − x2)λ for continuous

λ and optimize. You can get to within .3% of the exact answer this way!

Please send comments and corrections to christopher.beem@maths.ox.ac.uk.
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