
BF. 3 Further quantum theory lecture 2 ④

In this lecture
,
want to introduce a notational device due to Dirac that is widely used in Q .

M
.

and is particularly cell-adapted to treatment of
" continuum states "

.

We will then see an application in the study of the free particle : propagator.

①ra - Ket notation ( P. AM.

Dirac
,

"

The Principles of Quantum Mechanics
"

4930 ]

To a state vector 4EH, associate the
"

Ket" 147

Yes 147

To a state vector
,
can also associate an element & of the dual space Ll

*

& : fl → ①
↳
Here

,
in e-din's are mean the

UT t (y, UT )
"continuous dual ".

This map is Q
- anti linear (conjugate linear) due to anti linearity of inner product in first entry.

We represent Ty by a
" bra"

Py- 141

Tfieszfrechetrepatheoremieverydementofttcanbeauteousness
Now the inner product (Q, 4) is expressed as a

"

bracket "

( lo, 4) c- to 147

For operators A : H→ N
,
we write I A-47 = A 147

,
so we also have

141 A 147 = lol
,
AY) = (AH

, 4) = fAtto 14)

so we can write foll A = TA*41 (self-adjoint ops act as A to left and right) .



The outer product of tar and Tpl is the operator

Kkpl : 147↳ I a p 147 = Ip,4) 127 , harp 1)
*
= Ip>eat

Concatenation of bra's a Ket 's works as suggested visually .

Let flit , i c-I} be a complete, orthonormal basis : Ti l j t = Tj lit = dij .
we can write an arbitrary state in this basis as 147 = Cil i) .

Then we can measure components as Ci = f i I 47
,
and project onto lid w/ limit .

Can write orthogonal projection onto subspace w/o.N .

basis I lie , ieE}
" resolution of the identity

"

RI = I i ki l "completeness relation
"

t

In particular, for I=I, this is just the identity operator PI = Ife = Ii Kil .

Consider an operator A : define the matrix elements Aij = Ti l A Ij 7 . We have

A = 1µA In = limit A Ij j I = Aij lid I

In finite - dimensional setting, in basis lis , Aij is lisjlth entry in matrix representation.

Consider expectation value of an operator A- with eigenvectors At it = ai lid ,

i c- I in state 4 :

Ey IAI = HIA 147 = 41 Ali i 147

= ÷± ai Kil 4712

=p.jo?enegroutcomel-- (Probability of outcome) .

Clarifies that quantum mechanical
"

expectation value
" matches statistical notion of expected value for

associated random variable
.
Same for

,
c.g., dispersion and standard deviation.



We've said that observables admit orthonormal basis of eigenvectors, but in ex - dinil setting there can be a subtlety .

Consider free particle in IR (HEWARD .
Position observable X acts on wave functions 4W according to

X : 4W to xhfcx)

Introducegeneralized eigenstate 137 of X operator HE EIR obeying
X = 137

I 57 is a state ofdefinite position 5 , so we have

is Mi -- f: ta:
' fine;tide} = yes ,

To represent 187 a ith a cave function
,
should have

A

fax 4,#WHO de = 415 ) -i 4,5 x) or. - es ) = Yes , K )
-

re

In particular , this gives us
" continuum normalization condition

fest 's ' 1=4, g., B ) = ores - S
- I

±?!!!:j:;÷÷?a¥u=fw.canthinkethisaslinit⇐exp f ') ore - al



Momentum observable P acts on wave functions 4k) according to
④

p : 14×0 l→ - it4're)

What is the basis of eigenfunctions ?
Plpi -

- pl pl Ipe IR)
¥4

,p,
H -

- iz p Yip> K)

Y re) --Ne
'

for some constant IV.Ipi -
( not square - normalizable
for any

value of N,
so not really in H !

So we have the overlap b/w momentum & position states :

Telpi -- Yip > ki --Ne'¥

Momentum eigenstates should also obey some continuum normalization , compute overlap

i pl p
- i = N'§e"¥eiP¥d× =÷!e" 'sds=z7h÷orp - p 'd

integral representation of J- function (Fourier transform of constant function)

So we choose N = (Ztt )" to give canonical continuum normalization
.

To recap
: txt x - I = ore - x 'd Tpl p 't = d (p - p

' )

El pi -- Iff e
'¥

Epix d=÷se"¥
^ n

( L
a state of definite momentum a state of definite position is

is equally likely to be at any position . equally likely to have any momentum .



Resolution of identity kontinuum)

x x

I = fck k>txt I = fdplpiepl
-

x
-

x

Gives new perspective on wave function of a state vector :

It> =! Kiely>de 401×7 dx
,

ex 147=44)

147=1 lpkpltrdx-fjiypdlprdp.gs/4r--Ulpd
How are these related ?

Typo -- Tp 147 40=1×147

II. epix Its Ifjelprep 14h
= Ykldx =

,
Tcp ) dp

Thus 4W & http ) are related by Fourier transform and its inverse .

Indeed the Fourier transform is a unitary map INTO→ VAR) (Mancherel theorem) , so this
preserves norms, overlaps . Just a "change of basis

"

.

Given an (abstract) state vector 14 ) E H=L' NR)
,
can consider both its position -space

and momentum - space representations. Completely equivalent.



Can now define an important & intuitively useful object, the propagator.

Intuitively, propagator tellsyou :

given particle was
at position x. at time to, what is the amplitude for it to

be at position x, at time t. ?

UK
. .
t.jxo.to) = Tx, l U ft . . to ) Ix. >

Suppose we consider the free particle ofHamiltonian H - II . Energy eigenstates are just
momentum eigenstates :

H
free Ipt -- Eplpt = Inn l pl

- i Ep at -

ipbt-U.rreeft.to/lpr--etlpr=eZmtlpJ
Can determine propagator by inserting resolution of the identity next to Uft , .to)

UK
. .
t.ixo.to) = Gdp ex, I Ult.. tolprplxor

- i past
2mF

= fdp exile lpiiplxr
- i past

= fdp e ÷+×eiP¥
i - s t

= ¥§dp e Z Rt if Ip

Integral can be computed using results for Fresnel integrals for as an oscillatory Gaussian) .

fd×eEaitib×=pkjz
Uk . . t.no, to ) = fz.it/kexp-zm#I)at it at

Note that immediately after time to, amplitude is non - zero for arbitrarily large Ax . This reflects
infinite uncertainty in momentum given certainty in position @ start.

However phase oscillates very fast at large (Tff I , so averaging over positions leads to cancellations
.



Using the propagator :
Can use propagator togive integral expression for time evolution of arbitrary wave function

.

At t -- o, wave function Tx 147=4(x)

At ti o
,
wave function ElUft, ol 147 =/dy K lur t, o) ly Ky 147

-
- fdy Uk, ti y . o ) 41g )
= fz.FI/Ydyfygiem#F")

In problem sheet, vill try this out w/Gaussian initial wavefunction .


