
137.3 Further quantum theory lecture 5 ④
Now we turn to the subject of symmetries in quantum theory . We know from classical physics (dynamics,

electromagnetism , etc) that exact for approximate) symmetries of a system can be an indispensable tool in their analysis.

(If you took classical mechanics, you know there is a deep theorem due to Noether that
says

that
every continuous

symmetry ( translations, rotations, etc) gives
rise to a conserved quantity , sometimes called an

" integral of motion
"
. )

Before considering the subject formally, let's look at possibly the simplest example : translations in IR, which should be
a symmetry of the free particle ofHamiltonian H -- Pkm

.

We define an operator Tra) that translates the system by an amount a :

Tra)

Xt a

Hou does this act on wave - functions ? It shifts argument by minus a :

(Trai4) let a) = hero ⇒ Have l H = here - a )

Trai : UH i→ Frei -- Y re- a)

Can also see this using generalized position eigenstates : Tfa) KY
= txt a)

,
so

(Trai4)K) = eelTrai 147 = Jay #Truly 44 Idg ex lytar 41yd --fdy o re-y -a) Ury ) = 4K-a)

Observe some features : TraiTrb) -- Trat b)

Tra)
- '

= Tr - a)

Id
'

IIFteator fed Hearts de Frayre-al --Ide Tora-ow -

- Etr-as lol

Tla# =Tfa) --Tra)" so Tra) is a unitary operator on H.

( in particular, fTrai 4 IT raid 7=44107 so transition amplitudes are invariant .)

This interpretation of the translation operator is as an active transformation (move system to the right with respect to fixed
reference frame ) . Can also see passive point of view , where are think of translating our reference frame by - a . In this
case, it is the operators that transform :

fTrai lol Al Trai47 = toll Trat
'

Atra) 147

A TratA Trad

X i X t a

bill return to this re : time evolution (Schrodinger vs . Heisenberg picture .



III.station: ?!!! take:L!" lyd.sc?aaYeinh:hiech case the action of the translation operator should be arbitrarily close to

Lisztfellow = Lion 4k- ed = 4h - EY'Kit Oreo

We interpret this as giving the infinitesimal expansion of the operator
Tle) = I - if Tinf t O re) where Tine 4 = - it4TH

In otherwords
, Tint =P .

We
say
P is the infinitesimalgenerator of translations because ce can write a finite translation

as a composite of many infinitesimals

Trai = TIE )
"

= ( I - iffy to hail)
"

, exp fifth ) fExercise ! )

[In Part A
, you will have seen another version of this statement using Taylor expansions of wave functions . ]

This is actually even easier to see in momentum space. Note that

Trailpi = fdx Trailxiixlpr = Jdx leta> e'¥
-

-fax we"¥ e

"

fax we
'

= exp fit 1ps = exp life) Ip>

So our operator identity holds on the momentum basis, thus for all States . Note P is self -adjoint , and
this is compatible with unitarily of Tra) :

(Trail! (exp fifth
*

=

exp fi = Trat
'

From the passive perspective, we have H ' Tra#H Tra) = exp (iPad Heep fifa)
= H for any a iff TP

,
HI = O

.

So far
, e.g. ,

H = II
,
Tra) is a symmetry of the Hamiltonian , and this means we can find simultaneous eigenstates of H and P

. Thus
P is a conserved quantity under time evolution .



Abstracting a bit, what have we found out about the structure ofsymmetries, atleast in the case of translation ?

I ° Implemented via unitary (linear) operators on fl .

Z ° Symmetries form a group (additive group on IR ) and unitaries respectgroup law .

UrgoUrgo -- urge ,go , Uig 's -- Urgo
- '
= Urg#

[In otherwords
,
have unitary representation of IR on fl j group homomorphism R WH))

T o Infinitesimal translation implemented by self-adjoint operator (momentum) which generates finite transformations via exponentiation.

Urgeon -- exp fifty ,
C- =G*

4 o For symmetries of the Hamiltonian, inf.generator commutes with H and
gives

conserved quantity (momentum) .

Ulg-
'OH Ufg ) -- H ⇒ EG

,
HI -- O ⇒ C- conserved

These properties come close to capturing the general situation, but there are subtleties. To start with, why aren't
the first two points

"

obvious " ? Unitaries are the natural isomorphisms of Hilbertspaces . Surely symmetries should act as such (and respect
group structure . Right ?

Recall that space of physical states is not H
,
but PIN ) (space of rays in H) . So really , a quantum

symmetry need only be defined as a map
s , p (µ ) → Pffl)

that
preserves transition probabilities :

I to- 14
-y 12
p
=%Y where si rays through 01,4↳ rays through ol

'

, 4
'

[ takes sine value for Q
,
4 replaced by any vectors in same rays,

so is a function on PlH ) x Pbl) .

Naively , seems this could be a much weaker condition an s than what is necessary for it to descend from a unitary map on M .

Situation explained completely by a theorem of Wigner :

Thon
.

(Wigner) : Let C- be a group that acts on PIN ) by quantum symmetries . Then Age G. this action lifts to an
operator Ulg) : H→N that is either unitary or anti -unitary . This lift is defined up to multiplication
by a complex number of modulus 1 .

Aside : an anti -unitary map A : H→ N is a Q- anti linear map obeying (Ad,AY) = 14,4 ) . An example is

complex conjugation on L2 HR).



Remark : if A : N→ H is anti - unitary , then AZ is unitary, so any symmetry that can be written as
the square of another symmetry operation is necessarily represented as a unitary operator on H.

Because the
group

action needs only be respected at the level of rays, we can have

Urgo Ucg a) = ei
"S"

Urg ,go , 4cg . .go e ro. at

These must obey eid
Y' ' 8"
e

"
'9"9)

= e

"
"88k¥82 and they are defined up to rephasing s . A

realization of a group of this type is called a projective unitary representation . Another technical Lemma says that the

phases 101g i.g;) can be chosen to vanish for transformations in a neighborhood of the identity . It may not be possible
globally, though , as we 'll see in our discussions of spin .

Now we turn to the third point. This is actually completely general . There is a powerful theorem called

Stone's thm . on one - parameter unitary groups that essentially guarantees that for any one - parameter family of unitaries

{Utep} , Ut,Uti Utittz

there is a self -adjoint generator G = Gt s . t . Uft ) = exp f-itf) . Conversely , any self- adjoint G generates such a one -parameter
family of unitaries .

t-nmo.tv#.ii:::::::::.::::ii:::i÷:¥""*
Finally , to discuss dynamical symmetries more carefully , we reconsider the subjectof time translation .

We've introduced previously
the time evolution operator U ft.. to . Now we can see that in time - translationally invariant theories, Uft . , to) = Ut , t. is the

one- parameter family of cnitaries guaranteed by Wigner's then, and by Stone's thm . we have

Ut = exp I
- IHI ) ,

H = H
*

This could be taken as a definition of the Hamiltonian, H . Then we have

Yt -- UHYo
it¥41 = it hitherto) Yo = Hyo

thus
recovering time- dependant Schrodinger equation.

A dynamical symmetry is should represent a transformation of the system such that the process of
time evolution is invariant

,
i.e

.,

(Uylf e
"

Uy = u e

"

y = Uffe) fYeH

⇒ u
"

e

'

"¥u= e'
"¥
⇒ U

- ' HU -- H

if U-- exp f
-iff) then equivalently , [G, HI = O , so generator is a conserved quantity .

✓



So to sun up what we have for general quantum symmetries :

I ° Implemented via unitary or anti -unitary operators on fl .

2 ° Unitarily symmetries realized by projective unitary representation (group law obeyed ' '

up
to a phase

") .
T o Infinitesimal translation implemented by self-adjoint operator (momentum) which generates finite transformations via exponentiation.

4 o For dynamical symmetries we have (equivalently)

° [ G, H] -- O ( H& G simultaneously diagonals-table)
' Gt = UIGUt = G (C- invariant under time evolution)
•

exp fiGF ) H exp Tiff ) = H (Hamiltonian invariant under symmetry group action)

°

exp f
- i ) Ut = Ut exp fi¥ ) (symmetry and time evolution commute)

So far
, we considered only Abelian symmetries as examples . Next we turn to rotations, which are realized by the

non- Abelian group SOO) .


