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3 Further QuantumTheory Lecture 9
In practice, it is very unusual to be able to explicitly solve for the stationary stateselegy levels of a quantum system (specifically
those with infinite - dimensional Hilbert spaced. For this reason, it is essential to have an array of approximate methods to treat more general systems
than thoseyou've encountered thus far.

Our first consideration in this direction will be the analysis of systems whose Hamiltonians are
"

small perturbations
" of some reference

Hamiltonian (which we imagine one have previously understood) :

H -

- Hot H
'

total Hamiltonian] "unperturbed-- reference (perturbation
Hamiltonian

We want to think of H ' as being a small perturbation to Ho . To make this dear, we introduce a formal small

parameter u controlling the perturbation

H -- Ho tu H
'

Our task is then to develop the eigenstates(eigenvalues of Hu as formal power series in U :

Hu Yu -- Erik

where Yu = Y t ut't uz Y" t . . .
and Eu -- E tuE

'

tu
' E
"

t
. . . • We can choose a normalization for the relative to

4 as a formal series in U :

44. 147=1

Amounts to orthogonality of each 4
'"
rn et o oith 4 : 44147 = I

,
TY 't 47=0

,
TY" I 47=0

,
etc

.

.
can accomplish

this by shifting Yu by un Yu for appropriate n .

(Note that with this normalization
, we

have Ktul Yu) = I t O ki)
,
so going

to higher orders will need to normalize .)
Plugging expansions into time- independent Schrodinger equation, get conditions c-do-by-order in u:

(Hot UH ' ) (4 tuY 'tu4" t . .) = fEt uE 'tu' E " t . . . ) (4 tu Y't u24" t -)
Collecting low-order terms : Ohio : Hoy -- EY

→ 4 is an eigenstate of the unperturbed Hamiltonian with unperturbed energy
E
.

Qu' ) : H
'

Y t Hoy
'
= E
'

4 t EY
'

→ Reorganizing , fHo-E)4'=-fH'-F *
Oki) : H

'

4't Ho 4
"
= E"4 t E '4't EV

"

→ I Ho - E) 4
"

= - l H
'
- E
')Y't E "U

• e e



To solve f#I
,
we mightnaively want to write ④

Y
' I IIe . ht '- E ' I 4

However
,

Ho - Eo is surely not an invertible operator due to the nontrivial kernel . It turns out we can evade this problem .

Let's first see how we can solve (* ) in a low-brow fashion.
We take the following set-up for noo :

• {Un free form orthonormal basis of Ho eigenstates aterergies {En} .

• Unperturbed 4=14, forsome KEI where Eu is a non -degenerate energy
level

,
and we have

4u= the
,
a
-

- the talk
'

t - - . Eu = Eu
,
a
= En tuEn't - - -

First we take the inner productof equation ft) with Uk :

14h l Ho - Eu 14 = - the l H '-EE 14×1
O = - Ey, ht

') t E!

EI = Eye ht
' )

Don't even need the
'
toget firstenergy correction ; often very useful ! Continuing

to the dareHed state
,
are consider the

expansion in the orthonormal basis
:

14 = II. on 147 area 'YitY = unit

Now taking inner productof # I ai th 4h , we find

tht Ho- En 14 = - 14
,

l H '- E ' 14,

(En - En ) Cn = - tht H ' 14k) t E
'

on
,
k

For n -- K , LHS & RHS vanish identically (by our choice of E ,
so Ck unfired. We set it to zero by our normalization convention .

Other coefficients given by
Cn =

TY l H ' 14k)
- j nE K
En - En

Interestingly , we can rewrite this as follows :

14 ' y = I MnKhl" / tee ) H ' 14nFK k n

projection onto orthogonal complement to space
spanned by 4k .

" t f
= (¥4uk4 ft - Hu Yul) H ' 14k)

En- Ho

=

"

f,⇒ )
"

ht'- Eri ) Hrd



Before preceding to examples or higher- order analysis, we should stop and interrogate the idea that H
'

should be ④
"

small "
.

What does it mean? Do these calculations mean anything ?

In the finite-dimensional case, this is a (relatively ) straightforward exercise, but in the functional analytic setting is quite subtle.

thn.hw-olilfthe.ee#treaianstatsyqbyiiItaYYycj?III.Then the formal expansions for Yu, u & Eu, k have finite radius of convergence (estimation takes more effort) .

For dim (Ll) T re
,
can always find such an a, b . In infinite dimensions

,
often cannot (including many of the most interesting cases !) .

Even then
,
it is often useful to use perturbation theory, interpreted as an asymptotic series .

Eempk #I : An harmonic Oscillator

Consider l - d harmonic oscillator perturbed by
"
an harmonic " X

" term
.

H = II t ImaiX' tuM¥14
- in

Ho H '

Define X -
- III (at t 2-) and P -- i /tmI (Lt - 2- ) where [2- , d + I = 1 .

Recall unperturbed system has stationary states In> where EE tu (nth) and In> = Y I o ) and 2-107=0

To compute correction to ground state energy, we need to determine

2

Eo
'
= II Lo l X

" lo)

= IT to fo l rata
-

Y lo)

Expanding 4th power of X and remembering to discard terms that clearly ague zero,
we have

Eo
'
-

- 4th-w to 12-2+2-2++22+2 to > =3, tu i 0

The perturbed state is Io 's = Itw =

-

I tan?. -hWinto

=/ T41×4107/147 t T21×4107/127
=

-Ff 147 - 6ft I 27

=
-II 147 -1¥12)

A lot of fun combinatorics with ladder operators here !



Example AZ : Helium atom

Consider two electrons bound to a nucleus of charge 2- -- 2
.
The Hamiltonian (ignoring more subtle effects) is given by

Hae
...
III - I.÷.. It III

'

- o¥Iua.) t a.:÷±r
- w un

H, Hz Hint

The unperturbed stationary States are just antisymmetrized tensor products of Hydrogen-c stationary states faith 2=2) ,
a.k.a

,
the Hartree approximation .

%: iii. e
...
- Un

.

.irarena: remains. . . m.s.si
It the

Thi, is a highly degenerate system, but the ground state is wife -

#f¥a, the f-
Yo = 4: re.

H
.! real ref"t")

E. = -¥÷=
We can compute the

" first order" correction to this ground state energy
:

Eo
'
-

- Hol Him
.
Hot = a÷

. Ey.fi#.il=faF/fI.)fae.a.e.expfErrii-rul
I f

,
- fat

= ,,?ofd'e. d 'reE" (simplify by spherical symmetry )a tri - real
- Intra)

= Ze÷o) (Utri) fur, sin e-
,

dr
, drz do ,

itZa fritz- Zr, rz cosG)'k

Sin Gdf
= late!fdr, drz eep f- ri -r))¥rzcosG)'t
-

- Eh:÷l
So I I = Fo = .

3125
,
not exactly a small correction, but for reference:

E. +E
-

e - 0.69 FEET )
,
E - - l . fE÷a )

,
Ee = - 0.73 h÷a)

Not bad
, actually ! From a rigorous perspective, this expansion is probably divergent; in terms of Z , one can establish

convergence for 2- > 7.7 ( rather than Z -- 2 ) .



There is a small modification to make in the case of degenerate energy levels . As before
,
we need (from ¥)

that RHS C- Ran (Ho - E) . To generalize the construction from before
, one prove the following :

lemma : Dan ( Ho- E ) = (kerfHo-Elf

Pr we prove double inclusion .

° Ran l Ho- E) ElKerrHo- E) It i left we Ran (Ho- E) , so w
-

- fHo-E) in forsome Tefl. Now

÷i÷:::÷÷÷÷÷::⇒⇐i÷÷÷÷÷÷÷:÷÷÷÷÷÷:÷::÷÷::÷÷÷÷÷÷
Thus we need ht ' - E' ) 4 E (KerlHo- E))

t

.
Let { ¢}re± be orthonormal basis for Ho eigerspace ateigenvalue

F-
, so basis for kerfHo- E) .

Thus 4 = Ector
,
where we require Icf lost H

'
- E
' Idr) = O Hs c- I

,
i.e . ,
4 must be as eigenvector of

the matrix I lost H ' I dry with eigenvalue E
'

.

Solving for 4
'

then proceed as in non- degenerate case, but now some ambiguities remain :

free coefficients

" ""
'

I f¥!f µ. > +Er
at this order

trotr
Er = Ek

tort 4k

Slogan
In case of degeneracy, must choose basis for unperturbed States that diagonalizes perturbation
restricted to degenerate subspaces. In this basis, formulae from non-degenerate RT. apply , plus ambiguity.


