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3 Further QuantumTheory Lecture 10
We have from last lecture the equations of first-order, non - degenerate perturbation theory :
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Let 's look at this in another case involving more integration than last time.

Example AZ : Helium atom

Consider two electrons bound to a nucleus of charge Z -
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.
The Hamiltonian (ignoring more subtle effects) is given by
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The unperturbed stationary States are just antisymmetrized tensor products of Hydrogenic stationary states faith 2=2) ,
a.k.a

,
the Hartree approximation .
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We can compute the
" first order" correction to this ground state energy

:
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Example EZ Kent'd) :

So I I = Fo = .
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not exactly a small correction, but for reference:
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Not bad
, actually ! From a rigorous perspective, this expansion is probably divergent; in terms of Z , one can establish

convergence for E s 7.7 ( rather than Z -- 2 ) .

There is a small modification to make in the case of degenerate energy levels . As before
,
we need (from ¥)

that RHS C- Ran (Ho - E) . To generalize the construction from before
, are prove the following, which clarifies non- deg . case as well.

Lemma : Dan ( Ho- E ) = (kerfHo-Elf

Pr we prove double inclusion .
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Let { A}re± be orthonormal basis for Ho eigerspace ateigenvalue
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Slogan
In case of degeneracy, must choose basis for unperturbed States that diagonalizes perturbation
restricted to degenerate subspaces. In this basis, formulae from non-degenerate RT. apply , plus ambiguity.

Solving for 4
'

then proceed as in non- degenerate case, but now some ambiguities remain :
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Ambiguities will be fixed at higher order, don't effect analysis at first order.



Example #3 : Spin- Orbit coupling
The "fine structure " of Hydrogen arises from a number of corrections to the Hydrogen Hamiltonian due to relativistic effects
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We 'll focus on the spin
- orbit interaction for now .

Note It . s) =L (J2- L'- S2) where I = Lets .
Thus we're interested in
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,
Hsi is diagonalized in the added -spin basis . There are tricks to evaluate this

integral (see 5.3 of Sakurai) ; we will just quote
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So there is a splitting between different j -values at fixed l . However, kinetic correction and Dorain term
contribute at some order of magnitude, so need to treat all three . Result is rather surprising ! Dependonce onl cancels out and only splitting of energy levels is for different values ofj .

This can be understood if we use a relativistic treatment via the Dirac equation .



Second order (non- degenerate) P.T. : Now we need to solve for E Ya
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so tonormalize to order u2, we need to divide

by ft t uz 114,51125%2 I - tzu' 114,1112. The correction term multiplies 4k to
give an

additional Ohio correction :
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There is a neat trick togo
to higher orders .

Consider Hu Yu -- EuYu d HuYu -- Erk for u, v independent formal
variables
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Hopefully you'll never have to compute a third-order correction to any energy
- levels !


