
137.3 Further Quantum Theory Lecture 13

Our next topic isyet another approximation scheme , this one applies specifically to the case of systems described by wave - functions , and in
fact is applied more broadly in the study of differential equations. We will start with the time - dependent version, butwill quickly specialize to
the study of stationary States, where it is often the most useful

We begin (without loss ofgenerality) by parameterizeing a general solution of the time- dependent Schrodinger equation in polar form :
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We can rewrite the time- dependent Schrodinger equation in terms of A & S :
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So for this looks like a terrible idea . Our beautiful, linear Schrodinger equation is replaced by a complicated,
non- linear mess

.

Still
, we proceed !

Taking real and imaginary parts : O l l ) ofti)
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The " semi - classical approximation
" for WKB approximation) is to set to zero the 0ft' ) term in the

real part . The validity is clearly state dependent , but heuristically it is a " small t" approximation .
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Our semi- classical equations are now :

the Continuity Equation : de IA
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the Hamilton -Jacobi Equation : Ot S t In ITS Ptv = 0

The Hamilton -Jacobi equationgoverns the behaviour of the action of classical trajectories, so in some sense, the phase is controlled by
classical dynamics (though we won't pursue this here) .



By far the simplest setting in which to apply the WKB method is that of time - independent, one-dimensional problems. For
the time - independent case, we will estimate the wave-function of a state of energy

E by writing :
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Our equations for A and S become
,
for A andW,
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Further specializing to one dimension, Icall it x) we hav
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Putting these together 4± K) = Fw exp Pk 'd .
What's the intuition here ?
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Hmmmm""
Approximate wave f' by plane cave at frequency determined by energy locally as far constantpotential. Should begood
approximation if potential is slowly varying compared to cavelength . Can investigate the tern we dropped from Schrodinger equation
to see this is roughly the case .
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means relative charge in p or p
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So
,
for fixed UH, high energy states should be well-approximated.



First applications (a bit artificial ) : particle in a lumpy box
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This quantization condition determines the allowed energies, just like for particle in a box . Note that if one
define pre) as we have done

,
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Leads to a rough rule :
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one quantum state per hat) area in phase space
"
.



Now what if there is a classically disallowed region, butoith finite energy
?
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However
, weget the same equations if we don't impose any reality conditions, but

rather solve order-by -order in ht.
In other words :
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These combine togive exponentially growing and falling INKD wave- functions appropriate to the classically forbidden
region

:
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Now we can write a solution to our lumpy box problem :
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Boundary conditions nowgive somewhat involved constraints . Won't solve them now
,
but note they are overdetermined .

(set KI = 1 as a normalization condition, then HE fixed by continuity of 4 I 4
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,
so 4# must satisfy two equations. This gives

the implicit equations that determine E.

A simpler, but still involved, case is when the boundaries of the classically allowed region are not vertical . Then
there is a subtlety with the classical turning points. Ge 'll pursue this in the next lecture.


